Abstract:
A method of manufacturing a transparent pane, in particular a glass pane, which includes on at least one of its main surfaces a surface structure including an assembly of specified individual motifs in relief, in particular pyramids, cones, or truncated cones, created by embossing or by rolling. A structure is created on the surface of the pane constituted by individual motifs, based on one or more basic motifs but which are distinguished from each other by their depth, their height, and/or the perimeter of their base area, and/or by the position of their peak with respect to their base. With this variation, formation of intensity peaks of the reflected light is prevented and at the same time a high quality of light trapping is obtained by panes suitable, for example, for solar applications.
Abstract:
A roof panel with an integrated photovoltaic module is discussed. The roof panel has at least a substrate and an outer pane, which are laminarily bonded to each other via a thermoplastic layer, and embedded in the thermoplastic layer, at least one photovoltaic system that contains at least two strip-shaped solar cells that are connected in series via at least one electrically conductive connecting element.
Abstract:
A roof panel having an integrated photovoltaic module is described. The roof panel has at least a substrate and an outer panel, which are laminarily bonded to each other by means of a thermoplastic layer, wherein a photovoltaic layer system is embedded in the thermoplastic layer and the substrate contains at least one polymer.
Abstract:
A method of manufacturing a transparent pane, in particular a glass pane, which includes on at least one of its main surfaces a surface structure including an assembly of specified individual motifs in relief, in particular pyramids, cones, or truncated cones, created by embossing or by rolling. A structure is created on the surface of the pane constituted by individual motifs, based on one or more basic motifs but which are distinguished from each other by their depth, their height, and/or the perimeter of their base area, and/or by the position of their peak with respect to their base. With this variation, formation of intensity peaks of the reflected light is prevented and at the same time a high quality of light trapping is obtained by panes suitable, for example, for solar applications.
Abstract:
A roof panel having an integrated photovoltaic module is described. The roof panel has at least a substrate and an outer panel, which are laminarily bonded to each other by means of a thermoplastic layer, wherein a photovoltaic layer system is embedded in the thermoplastic layer and the substrate contains at least one polymer.
Abstract:
A transparent plate includes at least two parallel main borders and has, in relief on at least one of its main surfaces, repetitive pyramidal relief features, each including an apex, a base, and a set of edges that join the apex to the base, and at least one edge of the features being such that its projection in the general plane of the plate is substantially parallel to the two parallel main borders. The plate may be combined with photovoltaic cells so as to enhance the transmission of light to the cells. The plate can easily be produced by hot rolling.