Abstract:
A display device includes: a display panel including a first region including a transmissive part configured to transmit light provided from the outside and a second region not including the transmissive part; and a sensor overlapping with the transmissive part, and configured to obtain electrical information based on information provided from the outside, wherein the display panel includes: a thin film transistor layer including a plurality of transistors; a pixel defining layer defining an emission region of a plurality of pixels; and a light blocking layer on the pixel defining layer, and defining the transmissive part, and wherein the pixel defining layer in the first region covers at least a portion of the thin film transistor layer such that light provided through the transmissive part is blocked.
Abstract:
A display device includes a first pixel coupled to a first scan line and a first data line. The first pixel includes a switching transistor including a control terminal connected to the first scan line and an input terminal connected to the first data line, and is turned on by an on-scan signal, a first transistor including a first control terminal connected to the first scan line, a first input terminal connected to the first data line, and a first output terminal connected to the first control terminal; and a second transistor including a second control terminal connected to the first output terminal, a second input terminal receiving a base voltage, and a second output terminal connected to the second control terminal. The first and second transistors respectively convert light into first and second currents outputted respectively to the first and second output terminals in response to an off-scan signal.
Abstract:
A thin film transistor includes: a first semiconductor layer; a second semiconductor layer disposed on the first semiconductor layer; and a pair of source region and drain region formed by doping both sides of the first semiconductor layer and the second semiconductor layer with impurities, and the source region includes a first source layer on the same plane as the first semiconductor layer and a second source layer on the same plane as the second semiconductor layer, and the drain region includes a first drain layer on the same plane as the first semiconductor layer and a second drain layer on the same plane as the second semiconductor layer, and only one of the first semiconductor layer and the second semiconductor layer is a transistor channel layer.
Abstract:
A thin film transistor display panel according to an exemplary embodiment of the present invention includes a substrate, a first insulating layer formed on the substrate, a semiconductor layer formed on the first insulating layer, a second insulating layer formed on the semiconductor layer, and a gate electrode formed on the second insulating layer, in which the first insulating layer includes a light blocking material, and a thickness of the first insulating layer is greater than or equal to a thickness of the second insulating layer.
Abstract:
A display device includes a substrate, a display panel including a first display region having first pixels, a second display region having second pixels, and a third display region located between the first and second display regions and having third pixels, and a component disposed between the substrate and the display panel and which overlaps the second display region in a plan view. The first and third pixels are disposed at a first density in the first display region and the third display region, respectively, and the second pixels are disposed at a second density smaller than the first density in the second display region, and less than all of the third pixels are controlled to emit light during a predetermined display period.
Abstract:
A display device includes: a substrate including a main display portion, edge portions disposed at edges of the main display portion and including rounded corners, first side portions bent from the edge portions, and second side portions bent from the main display portion; scan lines and data lines that are disposed on the substrate; transistors connected to the scan lines and the data lines; and a data voltage transmission line connected to data lines that are disposed in the first side portions and the edge portions.
Abstract:
A thin film transistor display panel according to an exemplary embodiment of the present invention includes a substrate, a first insulating layer formed on the substrate, a semiconductor layer formed on the first insulating layer, a second insulating layer formed on the semiconductor layer, and a gate electrode formed on the second insulating layer, in which the first insulating layer includes a light blocking material, and a thickness of the first insulating layer is greater than or equal to a thickness of the second insulating layer.
Abstract:
An organic light-emitting display device includes: a display panel having a first display area and a second display area, the first and second display areas having different light transmittances from each other in a unit area, wherein the display panel includes a plurality of organic light-emitting diodes disposed in the first display area and the second display area, wherein a first organic light-emitting diode disposed in the first display area and a second organic light-emitting diode disposed in the second display area each include at least one light emitter, and the number of the light emitter included in the second organic light-emitting diode is greater than the number of the light emitter included in the first organic light-emitting diode.
Abstract:
An organic light-emitting display device includes a pixel area and a transmitting area adjacent to the pixel area. The organic light-emitting display device includes an organic light-emitting diode, a driving power wiring, and a heating pattern adjacent to the driving power wiring. The organic light-emitting diode includes a first electrode disposed in the pixel area, an organic light-emitting layer disposed on the first electrode and a second electrode disposed on the organic light-emitting layer. The driving power wiring is electrically connected to the second electrode. A portion of the organic light-emitting layer is disposed in the transmitting area. The organic light-emitting layer includes an opening area overlapping the heating pattern and at least a portion of the driving power wiring. The second electrode electrically contacts the driving power wiring through the opening area.