Abstract:
A multilayer ceramic capacitor includes a ceramic body including a dielectric layer and first and second internal electrodes alternately disposed with the dielectric layer interposed therebetween. The first internal electrode includes a first electrode plate and a first lead portion exposed to an external surface of the ceramic body and the second internal electrode includes a second electrode plate and a second lead portion exposed to an external surface of the ceramic body. The relationship Mb>Mt may be satisfied, where Mb is a length of the first and second lead portions extending from the first and second electrode plates to a mounting surface of the ceramic body to which the first and second lead portions are exposed and Mt is a length from the first and second electrode plates to a surface of the ceramic body opposing the mounting surface.
Abstract:
A multilayer ceramic capacitor may include a ceramic body including a plurality of dielectric layers; a first internal electrode disposed in the ceramic body and exposed to a first side surface in a width direction of the ceramic body and a second internal electrode disposed in the ceramic body and exposed to the first side surface in the width direction of the ceramic body; and first to third external electrodes disposed on the first side surface in the width direction of the ceramic body.
Abstract:
A multilayer ceramic capacitor and a board having the same are provided. The multilayer ceramic capacitor includes three external electrodes including a conductive layer, a nickel plating layer, and a tin plating layer sequentially stacked on a mounting surface of the ceramic body, and spaced apart from each other. When an outermost portion of a lead-out portion of an internal electrode exposed to the mounting surface is P, a total thickness of the conductive layer, the nickel plating layer, and the tin plating layer in a normal line direction of the conductive layer from P is a, a thickness of the conductive layer in the normal line direction of the conductive layer from P is b, and a sum of pore heights of pores existing in the conductive layer in the normal line direction of the conductive layer from P is bp, (b−bp)/a satisfies 0.264≦(b−bp)/a≦0.638.
Abstract:
A multilayer ceramic capacitor may include three external electrodes disposed on a mounting surface of a ceramic body to be spaced apart from one another. When a length of the ceramic body is defined as L, and a width of an active region including a plurality of internal electrodes disposed therein in a width direction of the ceramic body is defined as A, A/L is in a range of 0.64 to 1.14 (0.64≦A/L≦1.14).
Abstract translation:多层陶瓷电容器可以包括设置在彼此间隔开的陶瓷体的安装表面上的三个外部电极。 当将陶瓷体的长度定义为L,并且将包括设置在陶瓷体的宽度方向上的多个内部电极的有源区的宽度定义为A时,A / L在0.64〜 1.14(0.64≦̸ A / L≦̸ 1.14)。
Abstract:
A multilayer ceramic capacitor may include: a ceramic body including dielectric layers and having first and second main surfaces opposing each other, first and second side surfaces opposing each other, and first and second end surfaces opposing each other; an active layer configured to form capacitance by including first and second internal electrodes disposed to face each other with the dielectric layer interposed therebetween and alternately exposed to the first or second side surface; and a first external electrode disposed on the first side surface and electrically connected to the first internal electrodes and a second external electrode disposed on the second side surface and electrically connected to the second internal electrodes. When length of the ceramic body is L and length of the first and second external electrodes in the length direction of the ceramic body is L1, 0.2≦L1/L≦0.96 is satisfied.
Abstract:
A multilayer ceramic electronic component includes a ceramic body including dielectric layers; and first and second internal electrodes having at least one of the dielectric layers interposed therebetween. Each of the first internal electrodes includes a first electrode plate and a first lead connected to the first electrode plate, the first lead being exposed to a first surface of the ceramic body and having a bent shape. Each of the second internal electrodes includes a second electrode plate and a second lead connected to the second electrode plate, the second lead being exposed to a second surface of the ceramic body and having a bent shape. A portion of the first lead overlaps the second electrode plate, and a portion of the second lead overlaps the first electrode plate.
Abstract:
There are provided a multilayer ceramic capacitor and a board having the same. The multilayer ceramic capacitor may include: three external electrodes disposed on a mounting surface of a ceramic body to be spaced apart from each other and connected to lead portions of internal electrodes, wherein an interval between adjacent lead portions is 500.7 μm or less, widths of one-side margin portions of the external electrodes in a length direction of the ceramic body that are not in contact with the corresponding lead portions are 20.2 μm or more.
Abstract:
A composite electronic component includes an insulation sheet, a tantalum capacitor including a body part containing a sintered tantalum powder and a tantalum wire of which a portion is embedded in the body part, and disposed on the insulation sheet, a multilayer ceramic capacitor including a ceramic body in which a plurality of dielectric layers and internal electrodes are alternately disposed and first and second external electrodes disposed on a lower surface of the ceramic body, and disposed on the insulation sheet, and a molded part enclosing the tantalum capacitor and the multilayer ceramic capacitor, the internal electrodes including a lead-out portion led out to the lower surface of the ceramic body.
Abstract:
A multilayer ceramic capacitor may include three external electrodes disposed on a mounting surface of a ceramic body so as to be spaced apart from each other. When a height of a portion of the external electrode formed on one side surface of the ceramic body in a width direction is defined as d, and a thickness of the ceramic body is defined as T, a ratio of d/T satisfies 0.10≦d/T.
Abstract translation:多层陶瓷电容器可以包括设置在陶瓷体的安装表面上以彼此间隔开的三个外部电极。 当在宽度方向上形成在陶瓷体的一个侧表面上的外部电极的一部分的高度定义为d,并且将陶瓷体的厚度定义为T时,d / T的比率满足0.10< nlE; d / T。
Abstract:
A multilayer ceramic capacitor may include: a ceramic body including a plurality of dielectric layers; first and second internal electrodes disposed in the ceramic body, the first internal electrode having first and second lead portions exposed to a first surface of the ceramic body in a width direction, and the second internal electrode having a third lead portion exposed to the first surface of the ceramic body in the width direction; first to third external electrodes disposed on the first surface of the ceramic body in the width direction to be connected to the first to third lead portions, respectively; and an insulation layer disposed on the first surface of the ceramic body in the width direction. Each of the first and second lead portions may be spaced apart from the third lead portion by a predetermined distance.