摘要:
Disclosed herein is a bonding force test device, including: a holder mounted with a sample to which a plurality of subjects to be tested are bonded; a rotating part rotating the holder; and a fixing tip disposed in a direction in which the fixing tip faces the holder, wherein at the time of rotating the holder, the fixing tip contacts any one of the subjects to be tested in the sample and a shearing stress is applied to a bonded portion between the fixing tip and any one subject to be tested.
摘要:
Disclosed herein are a printed circuit board and a method of manufacturing the same. In detail, according to a preferred embodiment of the present invention, the printed circuit board includes: an insulating layer; and a metal layer formed on the insulating layer, wherein in the metal layer, a ratio occupied by crystal orientations of (110) and (112) is 20 to 80%. By doing so, the preferred embodiment of the present invention provides a printed circuit board including the metal layer having different crystal orientations to minimize factors of hindering electrical characteristics such as electric conductivity and improve isotropy of mechanical properties and a method of manufacturing the printed circuit board.
摘要:
There is provided an In nanowire including a substrate, an indium thin film formed on the substrate, an insulating film formed on the indium thin film and having at least one through hole through formation of a pattern, and an In nanowire vertically protruded from the indium thin film through the at least one through hole.
摘要:
Disclosed herein are a printed circuit board and a method of manufacturing the same. In detail, according to a preferred embodiment of the present invention, the printed circuit board includes: an insulating layer; and a metal layer formed on the insulating layer, wherein in the metal layer, a ratio occupied by crystal orientations of (110) and (112) is 20 to 80%. By doing so, the preferred embodiment of the present invention provides a printed circuit board including the metal layer having different crystal orientations to minimize factors of hindering electrical characteristics such as electric conductivity and improve isotropy of mechanical properties and a method of manufacturing the printed circuit board.