Abstract:
A skew calibration circuit may include a data delay unit receiving first data and a first code, and output delayed first data as second data by delaying the first data according to the first code; a clock delay unit receiving a first clock signal and a second code, and output delayed first clock signal as second clock signal by delaying the first clock signal according to the second code; a multiplexer receiving a clock signal and output the clock signal or an inverted clock signal of the clock signal as a first clock signal in response to a selection signal; and a control logic unit receiving the second data and the second clock signal and control the first code, the second code and the selection signal in response to the second data and the second clock signal.
Abstract:
A device for generating restoration data by descrambling scramble data includes a linear feedback shift register configured to receive a first clock including a plurality of edges and sequentially generate a plurality of seeds including first to N−1th seeds (where N is a natural number of 2 or greater) respectively corresponding to first to N−1th edges among the plurality of edges, a seed calculator configured to calculate an Nth seed corresponding to an Nth edge among the plurality of edges by using the first seed, and a descrambler configured to descramble the scramble data by using the plurality of seeds generated by the linear feedback shift register and the Nth seed calculated by the seed calculator. The linear feedback shift register is further configured to generate an N+1th seed by using the Nth seed.
Abstract:
A digital duty cycle correction circuit includes a duty cycle controller and a digital duty control code generator. The duty cycle controller generates first and second output clock signals by compensating duty cycles of first and second input clock signals based on a digital duty control code. The digital duty control code generator generates the digital duty control code based on a frequency value obtained by converting duty cycle information of the first output clock signal and the second output clock signal.
Abstract:
A frequency compensation apparatus includes a first counter setting a reference period using a main clock, a second counter sensing a change in the frequency of a sub clock using the reference period, and a frequency compensator providing a compensated frequency using information on the changed frequency of the sub clock. Related methods are also described.