Abstract:
Provided is a plasma monitoring apparatus including an objective lens configured to collect light that is emitted from plasma and passes through an optical window of a chamber, a beam splitter configured to divide the light collected by the objective lens into first light and second light, a first optical system and a second optical system that are provided on a first optical path of the first light and a second optical path of the second light, respectively, the first optical system and the second optical system having different focal lengths such that focal points of the first optical system and the second optical system are set at different regions in the plasma, and a light detector configured to detect the first light that has passed through the first optical system and the second light that has passed through the second optical system.
Abstract:
A calibrator of an OES may include a cover, a reference light source and a controller. The cover may be detachably combined with a ceiling of a plasma chamber of a plasma processing apparatus. The reference light source may be installed at the cover to irradiate a reference light to the OES through an inner space of the plasma chamber. The controller may compare a spectrum of the reference light inputted into the OES with a spectrum of an actual light inputted into the OES during a plasma process in the plasma chamber to calibrate the OES. Thus, the OES may be calibrated without disassembling of the OES from the plasma chamber to decrease a time for calibrating the OES.
Abstract:
Disclosed are a dry etching apparatus and a method of etching a substrate using the same. The apparatus includes a base at a lower portion of process chamber in which a dry etching process is performed, a substrate holder arranged on the base and holding a substrate on which a plurality of pattern structures is formed by the etching process, a focus ring enclosing the substrate holder and uniformly focusing an etching plasma to a sheath area over the substrate, a driver driving the focus ring in a vertical direction perpendicular to the base and a position controller controlling a vertical position of the focus ring by selectively driving the driver in accordance with inspection results of the pattern structures. Accordingly, the gap distance between the substrate and the focus ring is automatically controlled to thereby increase the uniformity of the etching plasma over the substrate.
Abstract:
A method for measuring a critical dimension of a mask pattern, including generating a mask pattern using an optically proximity-corrected (OPC) mask design including at least one block; measuring a first critical dimension of a target-region of interest (target-ROI) including neighboring blocks having a same critical dimension (CD), in the mask pattern; determining a group region of interest including the target-ROI and at least one neighboring block adjacent to the target-ROI; measuring second CDs of the neighboring blocks of the group region of interest; and correcting a measuring value of the first CD using a measuring value of the second CDs.