Abstract:
An electronic apparatus according to a variety of embodiments of the present invention may comprise: a display panel comprising a display which comprises one or more first pixels, one or more second pixels, and one or more first wires connected to the one or more first pixels and second pixels, and one or more fingerprint sensors which are disposed between the one or more first pixels and one or more second pixels; and a wiring layer comprising one or more second wires connected to the one or more fingerprint sensors by wiring between the layers, A variety of other embodiments are possible.
Abstract:
Various embodiments provide an electronic device and a method therefor, the electronic device comprising: at least one memory; a communication interface; one or more sensors; a location module; and at least one processor functionally connected to the at least one memory, the communication interface, the one or more sensors, and the location module, wherein the at least one processor is configured to acquire sensing data from at least one sensor among the one or more sensors, estimate a vehicle on-boarding state on the basis of the sensing data, and recognize, on the basis of the estimated vehicle on-boarding state, a vehicle on-boarding state by using the communication interface or the location module. Other embodiments are also possible.
Abstract:
Various embodiments of the present disclosure relate to an apparatus and a method for controlling an optical sensor in an electronic device. The electronic device includes: a light emission element configured to emit light; a first light reception element configured to detect an intensity of light which is reflected from an object based on the light emitted by the light emission element; a second light reception element configured to detect a shape of the object using the light which is reflected from the object based on the light emitted by the light emission element; and a processor. The processor is configured to: control the light emission element to emit light with an intensity corresponding to an operation mode of the electronic device; and receive light which is reflected from the object via the first light reception element or the second light reception element based on the operation mode of the electronic device. Other embodiments are possible.
Abstract:
A display that surrounds the external appearance of an electronic device is provided. The electronic device includes a housing that includes a first surface, a second surface opposite to the first surface, and a third surface formed of a side surface that encloses the space between the first and second surfaces, wherein each of the first to third surfaces are includes a material capable of transmitting light, a first display disposed in the housing adjacent to the first surface, a second display disposed in the housing adjacent to the second surface, and a third display that is disposed in the housing adjacent to the side surface and extends from the edge of the first display to the edge of the second display, wherein the first to third displays are disposed to substantially provide a display region to a whole surface of the housing.
Abstract:
A method for providing a service by an electronic device according to various embodiments may comprise the steps of: obtaining biometric information of a user; determining at least one service associated with the biometric information out of a plurality of services that the electronic device supports; and providing the determined at least one service.
Abstract:
An electronic device and a method of the electronic device are provided. The electronic device includes a location measurement module configured to measure a location; a memory configured to store an application program; and a processor electrically connected to the location measurement module and the memory, wherein the memory stores instructions that, when executed, cause the processor to store location information obtained by the location measurement module in the memory, process a request from the application program to obtain location information, and, in response to the request to obtain location information, provide the stored location information to the application program based on at least part of the location information stored in the memory.
Abstract:
An operating method of an electronic device is provided. The method includes determining, by a first processor using at least one sensor, whether a state change occurs, if it is determined that there is the state change, determining, by the first processor, whether to transmit state information to a second processor, and determining, by the second processor, whether to measure a changed position at each of set periods using a position measuring module on the basis of whether the state information is received.
Abstract:
A method for position measurement of a portable electronic device is provided. The method includes receiving, from a first satellite, first satellite information and state information of the first satellite information, receiving other state information of the first satellite information from a server that receives the other state information of the first satellite information from a terrestrial observatory, and using the first satellite information for the position measurement of the portable electronic device when the state information of the first satellite information received from the first satellite is unhealthy and the other state information of the first satellite information received from the server is healthy, wherein healthy state information indicates that satellite information may be used for the position measurement of the portable electronic device and unhealthy state information indicates that the satellite information may not be used for the position measurement of the portable electronic device.
Abstract:
The present disclosure includes an electronic device and a method thereof. The electronic device includes a display, an ambient light sensor, and at least one processor, operatively connected to the display and the ambient light sensor. The at least one processor is configured to detect, by using the ambient light sensor, ambient light of the electronic device during a first duration in a state in which the display is turned off, identify a setting for being used for the ambient light sensor, based at least in part on a characteristic of the ambient light, detect, by using the ambient light sensor, ambient light of the electronic device during a second duration based at least in part on the identified setting, and control a function of the display, based at least in part on the characteristic of the ambient light detected during the second duration.
Abstract:
An electronic device according to one example of the present invention comprises: a proximity sensor for generating proximity information on an object which approaches the electronic device; an iris sensor for detecting an iris; and a first processor for controlling the electronic device, wherein the first processor can be set to: determine the distance between the electronic device and the object on the basis of the proximity information generated by the proximity sensor; detect the iris by using the iris sensor when the distance between the electronic device and the object is greater than a first reference value; and inactivate the iris sensor when the distance between the electronic device and the object is less than or equal to the first reference value. In addition, other examples are possible.