Abstract:
A method and system are provided for detecting the wax appearance temperature (WAT) of a hydrocarbon fluid sample. The hydrocarbon fluid sample is run through a microfluidic channel at controlled temperatures while sensing the pressure drop across the channel. The WAT is determined by finding a temperature at which the pressure (drop) across the microfluidic channel caused by a temperature reduction of the hydrocarbon fluid sample does not stabilize over a given time interval, thereby establishing the WAT as being at that temperature or between that temperature and a previous higher temperature where the pressure (drop) stabilized over time.
Abstract:
Methods (and related apparatus) include obtaining data regarding a measured property. The measured property includes an amount of each of predetermined hydrocarbons in a gas sample extracted from drilling fluid exiting a wellbore having a hydrocarbon resource. An unknown characteristic of an investigated fluid property of the hydrocarbon resource is predicted utilizing the obtained input data and one or more predetermined models each built via statistical classification and regression analysis of a preexisting database containing records. Each record includes known characteristics of fluid properties of a different one of known reservoir fluids. The fluid properties include the investigated fluid property and the measured property. The investigated fluid property includes a fluid type of the hydrocarbon resource, an amount of at least one additional hydrocarbon, gas-oil ratio, or stock tank oil density.
Abstract:
An optical sensor and corresponding method of operation can detect a phase transition and/or related property of a hydrocarbon-based analyte. The optical sensor includes an optical element with a metallic film coupled or integral thereto, with a sample chamber holds the hydrocarbon-based analyte such that the hydrocarbon-based analyte is disposed adjacent the metallic layer. The optical sensor further includes a light source configured to direct light through the optical element such that the light is reflected by the metallic layer under conditions of surface plasmon resonance. The optical sensor analyzes the reflected light to detect a phase transition and/or related property of a hydrocarbon-based analyte.
Abstract:
An optical sensor includes a flow cell permitting flow of a hydrocarbon-based analyte therethrough. A metallic film is disposed adjacent or within the flow cell. At least one optical element directs polychromatic light for supply to an interface of the metallic film under conditions of surface plasmon resonance (SPR) and directs polychromatic light reflected at the interface of the metallic film (which is sensitive to SPR at such interface and thus provides an SPR sensing region within the flow cell) for output to at least one spectrometer that measures spectral data of such polychromatic light. A computer processing system is configured to process the measured spectral data over time as the hydrocarbon-based analyte flows through the flow cell to determine SPR peak wavelength over time and to process the SPR peak wavelength over time to determine at least one property related to phase transition of the analyte.
Abstract:
A method and apparatus for analyzing solubility of asphaltenes of a hydrocarbon fluid sample involves a sequence of operations including: i) performing microfluidic mixing operations that form a mixture that includes the hydrocarbon fluid sample, a solvent that dissolves asphaltenes and a precipitant that precipitates asphaltenes; ii) using microfluidic processes that result in precipitation of asphaltenes from the mixture resulting from i); iii) performing microfluidic filtering operations that remove precipitated asphaltenes resulting from ii) and passes permeate; and iv) performing optical spectroscopy on the permeate resulting from iii). The operations of i)-iv) can be repeated over iterations that vary the amount of solvent relative to the precipitant in the mixture. These iterations can cause varying fractional precipitation of asphaltenes in each given iteration.
Abstract:
A system for measuring asphaltene content of crude oil, includes a microfluidic chip, the microfluidic chip having a crude oil sample inlet port, a solvent port, a mixer and reactor section in fluid communication with the crude oil sample inlet port and the solvent port, and a filter in fluid communication with the mixer and reactor section, the filter having an inlet side and an outlet side, a waste port in fluid communication with the inlet side of the filter, and a product port in fluid communication with the outlet side of the filter. The system further includes an optical cell in fluid communication with the product port.
Abstract:
A system for measuring asphaltene content of crude oil, includes a microfluidic chip, the microfluidic chip having a crude oil sample inlet port, a solvent port, a mixer and reactor section in fluid communication with the crude oil sample inlet port and the solvent port, and a filter in fluid communication with the mixer and reactor section, the filter having an inlet side and an outlet side, a waste port in fluid communication with the inlet side of the filter, and a product port in fluid communication with the outlet side of the filter. The system further includes an optical cell in fluid communication with the product port.
Abstract:
A microfluidic apparatus includes a substrate defining a microchannel having inlet and an outlet defining a length of the microchannel. The microchannel has a main channel extending from the inlet to the outlet, and a plurality of side cavities extending from the main channel. The cavities are in fluid communication with the main channel. A method includes introducing a sample into the microchannel through the inlet to fill the entire microchannel, and then introducing a solvent into the microchannel through the inlet at a controlled flow rate and inlet pressure. A developed solvent front then moves along the main channel from the inlet to the outlet while displacing the sample in the main channel. Images of the microchannel are acquired as the front moves, and a miscibility condition is determined based on the images.
Abstract:
A method of characterizing an oil sample includes: flowing a first sample containing an oil through a microfluidic device that has a microfluidic filter while controlling the temperature of the first sample such that it is above wax appearance temperature for the oil and measuring and analyzing pressure difference across the filter over time to detect the presence of fines in the oil. The method further includes: flowing a second sample containing the oil through the microfluidic device while controlling the temperature of the second sample such that the temperature of the second sample is lower than wax appearance temperature for the oil and measuring and analyzing pressure difference across the filter over time as the second sample is filtered to detect the presence of wax in the oil.
Abstract:
A method of evaluating an asphaltene inhibitor includes providing a centrifugal microfluidic system including: a disc mounted to rotate about an axis; a microfluidic device mounted on the disc, the device having sample, solvent, inhibitor, and precipitant reservoirs and an analysis chamber in fluid communication with the sample, solvent, inhibitor, and precipitant reservoirs; and an optical detection system coupled to the analysis chamber and configured to measure the optical transmission of fluid in the analysis chamber. The method includes filling the sample, solvent, inhibitor, and precipitant reservoirs, respectively, with a sample, solvent, inhibitor, and precipitant; rotating the disc to generate centrifugal force to cause the sample, solvent, inhibitor, and precipitant to travel radially outward to the analysis chamber; and measuring the optical transmission of a mixture of the sample, solvent, inhibitor, and precipitant in the analysis chamber as a function of radial distance of the analysis chamber.