Abstract:
A substrate treating apparatus includes a plurality of load ports on which carriers having substrates received therein are placed, a plurality of process chambers that perform processes on the substrates, and a transfer robot that transfers the substrates between the load ports and the process chambers. The transfer robot is movable along a transfer passage having a lengthwise direction formed along a first direction, the load ports and the process chambers are arranged along the first direction on one side and an opposite side of the transfer passage, and the transfer robot transfers the substrates between the carriers placed on the load ports and the process chambers.
Abstract:
Disclosed is a substrate treating apparatus. The substrate treating apparatus includes a chamber providing a space in which a substrate is treated, a support unit supporting the substrate inside the chamber, a laser unit irradiating laser to an edge region of the substrate, a vision unit capturing the edge region of the substrate to measure an offset value of the substrate, and an adjustment unit adjusting an irradiation location of the laser based on the offset value of the substrate.
Abstract:
An antenna assembly, which is capable of controlling widely an etching rate in a plasma treatment process, and a plasma processing equipment including the same are provided. The antenna assembly provided to generate plasma includes a feeding line to which a radio frequency (RF) signal may be applied, and a coil member including a plurality of unit coils coupled to the feeding line and spaced apart from each other in a vertical direction at a predetermined gap.
Abstract:
Disclosed are an apparatus for treating a substrate and a plasma generating device. The apparatus for treating a substrate includes a process chamber, a support unit supporting the substrate in the process chamber, a gas supply unit supplying a process gas in the process chamber, and a plasma generating unit generating a plasma from the process gas supplied in the process chamber, and the plasma generating unit includes a high frequency power supply, an antenna unit connected to the high frequency power via a supply line, and an impedance matcher connected between the high frequency power supply and the antenna unit via the supply line and matching impedance, and the impedance matcher includes a first sensor connected to an input terminal and measuring input impedance and a second sensor connected to an output terminal and measuring output impedance.
Abstract:
A method for treating a substrate includes a first treating operation for treating an edge region of the substrate by irradiating a first laser beam having a first wavelength to the edge region of a rotating substrate, and a second treating operation for treating the edge region by irradiating a second laser beam of a second wavelength to the edge region of the rotating substrate, wherein the first wavelength and the second wavelength are different from each other.
Abstract:
Disclosed is a method for removing a film from a substrate by irradiating a plurality of unit pulse laser beams to an edge region of the substrate. The method includes a first irradiation operation for irradiating a plurality of unit pulse laser beams onto the substrate while the substrate is rotating, and a second irradiation operation for irradiating a plurality of unit pulse laser beams to regions of the substrate onto which the unit pulse laser beams are not irradiated in the first irradiation operation.
Abstract:
An impedance matching circuit, which is provided for quick impedance matching, a power supply apparatus, and a plasma processing equipment including the same are provided. The impedance matching circuit includes a parallel capacitor array connected to a radio frequency (RF) power supply to generate a RF signal, and a series capacitor array connected to the RF power supply in series, wherein the parallel capacitor array or the series capacitor array includes a mechanical vacuum variable capacitor and an electrical switch capacitor module connected to the mechanical vacuum variable capacitor in parallel.
Abstract:
Disclosed is a method for removing a film from a substrate by irradiating a plurality of unit pulse laser beams to an edge region of the substrate. The method includes a first irradiation operation for irradiating a plurality of unit pulse laser beams onto the substrate while the substrate is rotating, and a second irradiation operation for irradiating a plurality of unit pulse laser beams to regions of the substrate onto which the unit pulse laser beams are not irradiated in the first irradiation operation.