Abstract:
The present disclosure relates to a fluorogenic pH-sensitive dye and a film for detecting pH using the fluorogenic pH-sensitive dye on a polymer film. The fluorogenic pH-sensitive dye includes an aryl compound having a sulfonyl group (—SO2) and an agarose compound covalently bonded to the sulfonyl group (—SO2) of the aryl compound.
Abstract:
A condensed-cyclic compound represented by Formula 1 below, and an organic light-emitting diode including the condensed-cyclic compound. wherein R1 through R6, Ar5 and Ar6, and X1 through X10 are defined as in the specification.
Abstract:
The present invention relates to a quencher having a quenching effect on a fluorescent material exhibiting luminescence characteristics at an excited energy level, and various uses thereof.
Abstract:
A condensed-cyclic compound represented by Formula 1 below, and an organic light-emitting diode including the condensed-cyclic compound. wherein R1 through R6, Ar5 and Ar6, and X1 through X10 are defined as in the specification.
Abstract:
The present disclosure relates to a novel merocyanine-based compound capable of labeling biomolecules by intercalating biomolecules, and to a dye, kit and contrast medium composition for labelling biomolecules comprising the same.
Abstract:
The present invention relates to: a novel merocyanine-based compound which exhibits a fluorescence signal at a visible light region of at least 380 nm, and which may be used for detecting biomolecules; and a biomolecular labeling dye, kit and contrast agent composition comprising the same.
Abstract:
Disclosed are an organic light emitting diode and a method of manufacturing the same, the organic light emitting diode including: a light-transmitting substrate including a first region and a second region separated from the first region; a first lower electrode formed on the first region of the light-transmitting substrate and a second lower electrode formed on the second region thereof; a first organic thin film layer including a first emission material layer, formed on the first lower electrode of the first region, and a second organic thin film layer including a second emission material layer, formed on the second lower electrode of the second region; and a light-transmitting upper electrode formed on the first organic thin film layer and the second organic thin film layer and configured such that portions corresponding to the first region and the second region are connected to each other.
Abstract:
Disclosed are an organic light emitting diode and a method of manufacturing the same, the organic light emitting diode including: a light-transmitting substrate including a first region and a second region separated from the first region; a first lower electrode formed on the first region of the light-transmitting substrate and a second lower electrode formed on the second region thereof; a first organic thin film layer including a first emission material layer, formed on the first lower electrode of the first region, and a second organic thin film layer including a second emission material layer, formed on the second lower electrode of the second region; and a light-transmitting upper electrode formed on the first organic thin film layer and the second organic thin film layer and configured such that portions corresponding to the first region and the second region are connected to each other.
Abstract:
The present disclosure relates to a quencher having a quenching effect on a fluorescent material exhibiting luminescence characteristics at an excited energy level, and various uses thereof.