Abstract:
A white light emitting diode and a backlight module are provided. The light emitting diode comprises a blue chip and an encapsulating layer having yttrium aluminum garnet phosphor powder mixed therein, wherein the dominant wavelength in a frequency spectrum of blue light emitted from the blue chip is between 448 and 462.5 nm, the peak wavelength of yellow light emitted from the yttrium aluminum garnet phosphor powder is between 550 and 575 nm, and the doped concentration of the yttrium aluminum garnet phosphor powder is 0.01% to 0.1% by weight of the encapsulating layer. Due to the red shift of the peak wavelength of the blue light emitted from the blue chip, the brightness of the white LED is enhanced (>10%).
Abstract:
The invention provides an optical film assembly, a backlight module, and a display device. The backlight module includes a light source emitting at least a first light, a first optical film, and a second optical film laminated to the first optical film, wherein the first optical film includes a functional layer but does not include a base film, the functional layer is a diffusion film, a brightness enhancement film, a reflection film, or a prism film, and the second optical film is a light conversion layer, the light conversion layer receives the first light and converts the first light to at least a second light to emit, such that a light emission angle of the backlight module matches a requirement of wide viewing angle. The invention could broaden the light emitting angle of the backlight module to make the display device with the backlight module achieve wide viewing angle.
Abstract:
The present disclosure relates to the technical field of liquid crystal display, and particularly, relates to a device for fixing a quantum strip of a display and a display thereof. The device includes: a main body, provided with a cavity used for accommodating the quantum strip; a matching surface for clamping the quantum strip, which forms at least a part of the peripheral wall of the cavity and is capable of being firmly jointed with the outer surface of the quantum strip; and a connecting structure used for fixing the main body to the display. A proper material can be used for the main body for physical protection and thermal insulation protection on the quantum strip. The connecting structure is used for fixing the device to the display at a fixed position. The display includes the device. The device and the display can prevent the overturn and translation of the quantum strip, which is to avoid the influence on the light emitting effect of the backlight source and ensure the quality of the display. In addition, the main body of the device surrounds the quantum strip, which provides thermal protection and prevents physical damage and scratch.
Abstract:
A direct-type backlight module unit of the dual-side liquid crystal display comprising: a first display panel, a second display panel, a light source unit is formed between the first display panel and the second display panel; wherein the light source unit comprises a back-bezel including a first side opposite to the first display panel and a second side opposite to the second display panel and a through hole; the light source unit is a light bars made of a plurality of light units wherein a portion of the light bars bond into the first side so that the light units of the light bar is located in the through holes and lights the second display panel, and the other portion of the light bars bond into the second side so that the light units of the light bar is located in the through holes and lights the first display panel. Moreover, the back-bezel can be substituted by a LED light plate with through holes. It can reduce the thickness of the direct-type backlight module unit and the thickness of the dual-side LCD device in order to provide a batter user experience, simple structure and cost efficiency.
Abstract:
The present invention relates to a method and a backlight module that achieve high color saturation of an LCD device. The backlight module that achieves high color saturation of the LCD device includes a notch filter. Light of backlighting of the backlight module is subjected to light filtering by the notch filter and then enters a liquid crystal cell of the LCD device. The notch filter has a cut-off central wavelength of 500-640 nanometers. The half peak width of the cut-off wave band is 10-120 nanometers. The notch filter has a thickness of 0.3-15 millimeters. The present invention also provides a method for achieving high color saturation of an LCD device. The present invention proposes a novel high color saturation technique that allows the color saturation to be increased at different extents in different backlighting and that may have NTSC reach 100% when used with an RG LED.
Abstract:
The present invention provides an LED encapsulation and a manufacturing method thereof. The LED encapsulation includes: a first frame (10), a plurality of LED elements (20), encapsulant (30), and the quantum dot rail (40). The first frame (10) includes a PCB (12) and four sidewalls (14). The four sidewalls (14) surround and circumferentially delimit an accommodation space (18). The plurality of LED elements (20) is mounted on the PCB (12) and in electrical connection therewith. The encapsulant (30) is filled in the accommodation space (18). The four sidewalls (14) each have a top end portion forming a mounting section (16). The quantum dot rail (40) is mounted in the mounting sections (16) so that the quantum dot rail (40) is located above the encapsulant (30). The first frame (10), the plurality of LED elements (20), and the quantum dot rail (40) are collectively and integrally encapsulated so as to be fixedly assembled together.
Abstract:
A liquid crystal display and the backlight module thereof are disclosed. The backlight module includes a substrate, a light guiding plate, a first pillar, a light source, at least two separating pieces, and an elastic piece. The separating pieces keep the distance between the light guiding plate and the lighting assembly of the light source equals to a minimum distance. A first end of the elastic piece connects one end of the first pillar passing through the crack of the substrate, and a second end of the elastic piece connects to the substrate. The elastic piece pushes the light guiding plate via the first pillar to move toward the light source until the distance between the light guiding plate and the lighting assembly of the light source equals to the minimum distance. The liquid crystal device and the backlight module are capable of keeping the coupling distance of the backlight module remain unchanged.
Abstract:
A light conversion film for a backlight module, a backlight module and a display device are disclosed. The backlight module includes a light source that emits at least a first light; a light conversion film that receives the first light, converts the first light into a second light and emits the second light such that a light emission angle of the backlight module is greater than 120 degrees and a color temperature is less than 15000. The present invention can increase a brightness viewing angle to reach 120 degrees. Besides, the light conversion film has a higher light excitation efficiency, capable of decreasing the color temperature of the backlight module, and enhances the display effect.
Abstract:
The present invention provides a structure of a high color gamut liquid crystal display module, which includes a backlight module (1) and a liquid crystal display panel (3) arranged above the backlight module (1). The backlight module (1) includes an LED light source (17) and the LED light source (17) is an LED light source having a wavelength below 460 nm. The liquid crystal display panel (3) includes a TFT substrate (31), a CF substrate (33) arranged above the TFT substrate (31), a liquid crystal layer (35) arranged between the TFT substrate (31) and the CF substrate (33), and a fluorescent powder layer (5) arranged on a lower surface of the TFT substrate (31). The CF substrate (33) includes red, green, and blue sub-pixel units that are arranged in a matrix. The fluorescent powder layer (5) includes at least two of red, green, and blue fluorescent powder units (51, 53, 55), which are arranged to respectively correspond to the blue, green, or blue sub-pixel units. The structure effectively increases color gamut of a liquid crystal display module and provides the liquid crystal display module with high color saturation.
Abstract:
The present application relates to a quantum dot lens and a manufacturing method thereof, wherein the quantum dot comprises a lens body in the form of a rotator, a light incident surface and a light exit surface are formed on the lens body, the centers of the light incident surface and the light exit surface are located in the center axis of the lens body; and quantum dot materials are filled inside the lens body. The quantum dot lens can be used with a single LED. Since the light excited from the quantum dot materials can directly meet the need of increasing the light emitting angle, the quantum dot lens has no need to be used with a second lens for light distribution; the quality of the backlight used in the backlight illumination can be improved; and the high gamut in the direct type backlight can be achieved.