Abstract:
A method of drilling a part, or a turbine engine part, by a pulse laser generator including a cavity in which there is mounted a solid bar for generating laser pulses, the method including determining values of a plurality of operating parameters of the laser generator for forming orifices of predetermined diameter in the part, and taking account, among the parameters, of a setpoint value for the temperature of the laser cavity, which value is determined as a function of characteristics of the orifices to be drilled.
Abstract:
A method of friction welding an airfoil (32) onto a rotor disk of a turbine engine, the disk having at its outer periphery a projecting stub (18) onto which the airfoil is to be welded, the method comprising a step consisting in mounting chocks (24) on leading and trailing edges of the stub, the method being characterized in that, before friction welding, the chocks are secured to the stub by welding, and in that during the friction welding operation, the beads of welding (28) between the chocks and the stub are expelled, at least in part, in seams of material (34) that form around the connection zone between the airfoil and the stub and that are subsequently to be removed or eliminated, e.g. by machining.
Abstract:
A method for hard-surfacing metal parts for an aircraft turbofan, the method involving the use of a nozzle outputting a laser beam or an electron beam, which is to heat a sprayed powder for hard-surfacing the metal part, the method including positioning the metal part to be hard-surfaced in an enclosure, the top portion of which has an opening; positioning a mobile cover covering the opening of the top portion, the mobile cover having an opening; positioning the nozzle at the opening of the mobile cover; feeding an inert gas into the enclosure; spraying metal powders and emitting the laser or electron beam for hard-surfacing the metal part; moving the nozzle relative to the enclosure along a path for hard-surfacing the metal part, the movement of the nozzle causing the movement of the mobile cover on the top surface of the enclosure.
Abstract:
A method for hard-surfacing metal parts for an aircraft turbofan, the method involving the use of a nozzle outputting a laser beam or an electron beam, which is to heat a sprayed powder for hard-surfacing the metal part, the method including positioning the metal part to be hard-surfaced in an enclosure, the top portion of which has an opening; positioning a mobile cover covering the opening of the top portion, the mobile cover having an opening; positioning the nozzle at the opening of the mobile cover; feeding an inert gas into the enclosure; spraying metal powders and emitting the laser or electron beam for hard-surfacing the metal part; moving the nozzle relative to the enclosure along a path for hard-surfacing the metal part, the movement of the nozzle causing the movement of the mobile cover on the top surface of the enclosure.
Abstract:
A method for hard surface deposition on aluminium metal parts of a turbine engine using MIG welding equipment which includes a pulsed current generator and pulsed filler metal wire feed, wherein the deposition is achieved using a filler metal wire whose composition is of the same nature as the composition of the aluminium alloy of the part to undergo hard surface deposition, with the pulsed metal wire feed and speed of deposition on the metal part of the turbine engine being adapted to carry out deposition without hot fissuring.
Abstract:
A method for fabricating a part by selective melting or sintering of powder beds by high energy beam, the method including a) providing a material in the form of powder particles; b) depositing a first powder layer on a support; c) scanning a region of the first layer with the beam to heat the powder locally to a temperature higher than the powder sintering temperature, such that the powder particles as melted or sintered form a first single-piece element; d) depositing a second powder layer on the first powder layer; e) scanning a region of the second layer with the beam to heat the powder to a temperature higher than the powder sintering temperature, so that the particles of powder as sintered or melted form a second single-piece element; and f) repeating d) and e) for each new powder layer laid over a preceding layer until the part is formed.
Abstract:
A method of friction welding an airfoil (32) onto a rotor disk of a turbine engine, the disk having at its outer periphery a projecting stub (18) onto which the airfoil is to be welded, the method comprising a step consisting in mounting chocks (24) on leading and trailing edges of the stub, the method being characterized in that, before friction welding, the chocks are secured to the stub by welding, and in that during the friction welding operation, the beads of welding (28) between the chocks and the stub are expelled, at least in part, in seams of material (34) that form around the connection zone between the airfoil and the stub and that are subsequently to be removed or eliminated, e.g. by machining.
Abstract:
A method for hard surface deposition on aluminum metal parts of a turbine engine using MIG welding equipment which includes a pulsed current generator and pulsed filler metal wire feed, wherein the deposition is achieved using a filler metal wire whose composition is of the same nature as the composition of the aluminum alloy of the part to undergo hard surface deposition, with the pulsed metal wire feed and speed of deposition on the metal part of the turbine engine being adapted to carry out deposition without hot fissuring.
Abstract:
A protection cover suitable for being placed between a spray nozzle and a metal part during a process of resurfacing the metal part, the protection cover including a side wall extending along a reference axis, the side wall including an inner surface and an outer surface, the side wall having a lower end and an upper end, the side wall being perforated by at least one lateral gas inlet port, the lower end of the side wall being perforated by a notch into which a portion of the metal part can be inserted, the upper end of the side wall being provided with an opening into which a portion of the spray nozzle can be inserted. The inner surface of the side wall includes at least one frustoconical portion.
Abstract:
A method of drilling a part, or a turbine engine part, by a pulse laser generator including a cavity in which there is mounted a solid bar for generating laser pulses, the method including determining values of a plurality of operating parameters of the laser generator for forming orifices of predetermined diameter in the part, and taking account, among the parameters, of a setpoint value for the temperature of the laser cavity, which value is determined as a function of characteristics of the orifices to be drilled.