Abstract:
Fabrication methods and structures relating to backplanes for back contact solar cells that provide for solar cell substrate reinforcement and electrical interconnects are described. The method comprises depositing an interdigitated pattern of base electrodes and emitter electrodes on a backside surface of a semiconductor substrate, attaching a prepreg backplane to the interdigitated pattern of base electrodes and emitter electrodes, forming holes in the prepreg backplane which provide access to the first layer of electrically conductive metal, and depositing a second layer of electrically conductive metal on the backside surface of the prepreg backplane forming an electrical interconnect with the first layer of electrically conductive metal through the holes in the prepreg backplane.
Abstract:
It is an object of this disclosure to provide high productivity, low cost-of-ownership manufacturing equipment for the high volume production of photovoltaic (PV) solar cell device architecture. It is a further object of this disclosure to reduce material processing steps and material cost compared to existing technologies by using gas-phase source silicon. The present disclosure teaches the fabrication of a sacrificial substrate base layer that is compatible with a gas-phase substrate growth process. Porous silicon is used as the sacrificial layer in the present disclosure. Further, the present disclosure provides equipment to produce a sacrificial porous silicon PV cell-substrate base layer.
Abstract:
This disclosure enables high-productivity controlled fabrication of uniform porous semiconductor layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers). Some applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further, this disclosure is applicable to the general fields of photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.
Abstract:
This disclosure enables high-productivity fabrication of semiconductor-based separation layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers), optical reflectors (made of multi-layer/multi-porosity porous semiconductors such as porous silicon), formation of porous semiconductor (such as porous silicon) for anti-reflection coatings, passivation layers, and multi-junction, multi-band-gap solar cells (for instance, by forming a variable band gap porous silicon emitter on a crystalline silicon thin film or wafer-based solar cell). Other applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further the disclosure is applicable to the general fields of Photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.