摘要:
A diode having excellent switching characteristics is provided. A diode includes a silicon carbide substrate, a stop layer, a drift layer, a guard ring, a Schottky electrode, an ohmic electrode, and a surface protecting film. At a measurement temperature of 25° C., a product R•Q of a forward ON resistance R of the diode and response charges Q of the diode satisfies relation of R•Q≦0.24×Vblocking2. The ON resistance R is found from forward current-voltage characteristics of the diode. A reverse blocking voltage Vblocking is defined as a reverse voltage which produces breakdown of the diode. The response charges Q are found by integrating a capacitance (C) obtained in reverse capacitance-voltage characteristics of the diode in a range from 0 V to Vblocking.
摘要:
A semi-insulating gallium arsenide crystal substrate has a main surface with a plane orientation of (100) and a diameter of 2R mm, the main surface having a specific resistance with an average value of 5×107 Ω·cm or more and with a standard deviation divided by the average value of the specific resistance, or with a coefficient of variation, of 0.50 or less in each of three measurement areas having their centers at distances of 0 mm, 0.5R mm, and (R-17) mm, respectively, from the center of the main surface in the [010] direction.
摘要:
There is provided a gallium nitride substrate having a C plane as a surface with a diameter of not less than 100 mm, the gallium nitride substrate including first regions and second regions having different average values of band-edge emission intensities in a micro photoluminescence mapping at 25° C. in a square region located in the C plane and having sides each having a length of 2 mm, an average value Ibe1a of the band-edge emission intensities of the first regions and an average value Ibe2a of the band-edge emission intensities of the second regions satisfying the following relational expressions (I) and (II): Ibe1a>Ibe2a . . . (I) and 2.1≤Ibe1a/Ibe2a≤9.4 . . . (II).
摘要:
A thermoelectric conversion material includes: a base material that is a semiconductor composed of a base material element; a first additional element that is an element different from the base material element, has a vacant orbital in a d orbital or f orbital located internal to an outermost shell of the first additional element and forms a first additional level in a forbidden band of the base material; and a second additional element that is an element different from both of the base material element and the first additional element and forms a second additional level in the forbidden band of the base material. A difference is 1 between the number of electrons in an outermost shell of the second additional element and the number of electrons in at least one outermost shell of the base material element.
摘要:
A thermoelectric conversion material includes: a base material that is a semiconductor; and an additive element that differs from an element constituting the base material. An additional band formed of the additive element is present within a forbidden band of the base material. A density of states of the additional band has a ratio of greater than or equal to 0.1 relative to a maximum value of a density of states of a valence band adjacent to the forbidden band of the base material.
摘要:
A gallium nitride substrate has a surface with a diameter of not less than 100 mm, a difference being not less than 0.1 cm−1 and not more than 2 cm−1 between maximum and minimum values of wave numbers at a maximum peak of peaks corresponding to an E2H phonon mode in micro-Raman scattering mapping measurement at each of square regions having sides each having a length of 2 mm, the square regions being located at a total of five locations including a central location and four circumferential edge locations on the surface of the gallium nitride substrate, a difference being not more than 2 cm−1 between maximum and minimum values of the wave numbers at the maximum peak of the peaks corresponding to the E2H phonon mode at all of measurement points in the five locations.
摘要:
A gallium nitride substrate has a surface with a diameter of not less than 100 mm, a difference being not less than 0.1 cm−1 and not more than 2 cm−1 between maximum and minimum values of wave numbers at a maximum peak of peaks corresponding to an E2H phonon mode in micro-Raman scattering mapping measurement at each of square regions having sides each having a length of 2 mm, the square regions being located at a total of five locations including a central location and four circumferential edge locations on the surface of the gallium nitride substrate, a difference being not more than 2 cm−1 between maximum and minimum values of the wave numbers at the maximum peak of the peaks corresponding to the E2H phonon mode at all of measurement points in the five locations.
摘要:
There is provided a gallium nitride substrate having a C plane as a surface with a diameter of not less than 100 mm, the gallium nitride substrate including first regions and second regions having different average values of band-edge emission intensities in a micro photoluminescence mapping at 25° C. in a square region located in the C plane and having sides each having a length of 2 mm, an average value Ibe1a of the band-edge emission intensities of the first regions and an average value Ibe2a of the band-edge emission intensities of the second regions satisfying the following relational expressions (I) and (II): Ibe1a>Ibe2a . . . (I) and 2.1≦Ibe1a/Ibe2a≦9.4 . . . (II).
摘要:
A group III nitride composite substrate with a diameter of 75 mm or more includes a support substrate having a thickness ts of 0.1 mm or more and 1 mm or less and a group III nitride film having a thickness tf, thinner than the thickness ts, of 0.01 mm or more and 0.25 mm or less that are bonded to each other. An absolute value |Δα| of a difference Δα in thermal expansion coefficient determined by subtracting a thermal expansion coefficient αs of the support substrate from a thermal expansion coefficient αf of the group III nitride film is 2.2×10−6 K−1 or less. A Young's modulus Es and the thickness ts of the support substrate, a Young's modulus Ef and the thickness tf of the group III nitride film, and the difference Δα in thermal expansion coefficient satisfy a relation: ts2/tf≧6Ef·|Δα|/Es.