摘要:
A replacement gate field effect transistor includes at least one self-aligned contact that overlies a portion of a dielectric gate cap. A replacement gate stack is formed in a cavity formed by removal of a disposable gate stack. The replacement gate stack is subsequently recessed, and a dielectric gate cap having sidewalls that are vertically coincident with outer sidewalls of the gate spacer is formed by filling the recess over the replacement gate stack. An anisotropic etch removes the dielectric material of the planarization layer selective to the material of the dielectric gate cap, thereby forming at least one via cavity having sidewalls that coincide with a portion of the sidewalls of the gate spacer. A portion of each diffusion contact formed by filling the at least one via cavity overlies a portion of the gate spacer and protrudes into the dielectric gate cap.
摘要:
A replacement gate field effect transistor includes at least one self-aligned contact that overlies a portion of a dielectric gate cap. A replacement gate stack is formed in a cavity formed by removal of a disposable gate stack. The replacement gate stack is subsequently recessed, and a dielectric gate cap having sidewalls that are vertically coincident with outer sidewalls of the gate spacer is formed by filling the recess over the replacement gate stack. An anisotropic etch removes the dielectric material of the planarization layer selective to the material of the dielectric gate cap, thereby forming at least one via cavity having sidewalls that coincide with a portion of the sidewalls of the gate spacer. A portion of each diffusion contact formed by filling the at least one via cavity overlies a portion of the gate spacer and protrudes into the dielectric gate cap.
摘要:
Self-assembled polymer technology is used to form at least one ordered nanosized pattern within material that is present in a conductive contact region of a semiconductor structure. The material having the ordered, nanosized pattern is a conductive material of an interconnect structure or semiconductor source and drain diffusion regions of a field effect transistor. The presence of the ordered, nanosized pattern material within the contact region increases the overall area (i.e., interface area) for subsequent contact formation which, in turn, reduces the contact resistance of the structure. The reduction in contact resistance in turn improves the flow of current through the structure. In addition to the above, the inventive methods and structures do not affect the junction capacitance of the structure since the junction area remains unchanged.
摘要:
Self-assembled polymer technology is used to form at least one ordered nanosized pattern within material that is present in a conductive contact region of a semiconductor structure. The material having the ordered, nanosized pattern is a conductive material of an interconnect structure or semiconductor source and drain diffusion regions of a field effect transistor. The presence of the ordered, nanosized pattern material within the contact region increases the overall area (i.e., interface area) for subsequent contact formation which, in turn, reduces the contact resistance of the structure. The reduction in contact resistance in turn improves the flow of current through the structure. In addition to the above, the inventive methods and structures do not affect the junction capacitance of the structure since the junction area remains unchanged.
摘要:
Self-assembled polymer technology is used to form at least one ordered nanosized pattern within material that is present in a conductive contact region of a semiconductor structure. The material having the ordered, nanosized pattern is a conductive material of an interconnect structure or semiconductor source and drain diffusion regions of a field effect transistor. The presence of the ordered, nanosized pattern material within the contact region increases the overall area (i.e., interface area) for subsequent contact formation which, in turn, reduces the contact resistance of the structure. The reduction in contact resistance in turn improves the flow of current through the structure. In addition to the above, the inventive methods and structures do not affect the junction capacitance of the structure since the junction area remains unchanged.
摘要:
Self-assembled polymer technology is used to form at least one ordered nanosized pattern within material that is present in a conductive contact region of a semiconductor structure. The material having the ordered, nanosized pattern is a conductive material of an interconnect structure or semiconductor source and drain diffusion regions of a field effect transistor. The presence of the ordered, nanosized pattern material within the contact region increases the overall area (i.e., interface area) for subsequent contact formation which, in turn, reduces the contact resistance of the structure. The reduction in contact resistance in turn improves the flow of current through the structure. In addition to the above, the inventive methods and structures do not affect the junction capacitance of the structure since the junction area remains unchanged.
摘要:
A novel trench etching method for etching trenches of different depths which are self-aligned to one another is presented. The method comprises the steps of (a) creating first and second trenches of a same depth in a dielectric layer, wherein the second trench is wider than the first trench, (b) forming a conformal gapfill layer on top of the dielectric layer such that the conformal gapfill layer is thicker in the first trench than in the second trench, (c) etching back the conformal gapfill layer until a bottom wall of the second trench is exposed to the atmosphere while a bottom wall of the first trench is still covered by the conformal gapfill layer, (d) etching further into the dielectric layer via the second trench. As a result, the second trench is deeper than the first trench.
摘要:
A semiconductor device with openings of differing depths in a substrate or layer is described, as are related methods for its manufacture. Through selective deposition of a single mask layer, whereby low aspect ratio openings are substantially coated while high aspect ratio are at most partially coated, subsequent etching of the substrate or layer is restricted to uncoated portions of the high aspect ratio openings. The result is a substrate or layer with openings of more than one depth using a single mask layer. In a second embodiment, the selective deposition of a single mask layer is utilized to etch a layer while protecting underlying structures from etching. In a third embodiment, the selective deposition of a single mask layer is utilized to etch an opening into a layer wherein the opening has a sub-lithographic diameter, i.e., the diameter of the opening is smaller than can be achieved with the particular lithographic technique employed.
摘要:
In a method of fabricating a metallization structure during formation of a microelectronic device, the improvement of reducing metal shorts in blanket metal deposition layers later subjected to reactive ion etching, comprising: a) depositing on a first underlayer, a blanket of an aluminum compound containing an electrical short reducing amount of an alloy metal in electrical contact with the underlayer; b) depositing a photoresist and exposing and developing to leave patterns of photoresist on the blanket aluminum compound containing an electrical short reducing amount of an alloy metal; and c) reactive ion etching to obtain an aluminum compound containing an alloy metal line characterized by reduced shorts in amounts less than the aluminum compound without said short reducing amount of alloy metal.
摘要:
A stressed semiconductor structure including at least one FinFET device on a surface of a substrate, typically a buried insulating layer of an initial semiconductor-on-insulator substrate, is provided. In a preferred embodiment, the at least one FinFET device includes a semiconductor Fin that is located on an unetched portion of the buried insulator layer which has a raised height as compared to an adjacent and adjoining etched portion of the buried insulating layer. The semiconductor Fin includes a gate dielectric on its sidewalls and optionally a hard mask located on an upper surface thereof. The inventive structure also includes a gate conductor, which is located on the surface of the substrate, typically the buried insulating layer, and the gate conductor is at least laterally adjacent to the gate dielectric located on the sidewalls of the semiconductor Fin. A stressed silicide is located on the gate conductor, which introduces stress into the channel of the FinFET device. The stressed silicide memorizes the stress from a sacrificial stressed film that is formed prior to forming the stressed silicide. The stress type of the stressed film is introduced into the silicide during a silicide anneal step.