Abstract:
A switching element includes an active pattern including a channel portion, a source portion connected to the channel portion, and a drain portion connected to the channel portion, the source portion, a gate electrode overlapping the channel portion of the active pattern, a gate insulation layer disposed between the channel portion of the active pattern and the gate electrode, a source electrode disposed on the source portion of the active pattern to make ohmic contact with the source portion, and a drain electrode disposed on the drain portion of the active pattern to make ohmic contact with the drain portion. The drain portion and the channel portion of the active pattern include the same or substantially the same material.
Abstract:
A thin film transistor (TFT) array substrate includes a substrate, a gate electrode, a gate line, a first data line, and a second data line on the substrate, a gate insulating layer that covers the gate electrode and the gate line and includes a first opening that exposes a portion of the first data line and a second opening that exposes a portion of the second data line, an active layer disposed on the gate insulating layer so that at least one portion of the active layer overlaps the gate electrode, a drain electrode and a source electrode that extend from opposite sides of the active layer, a pixel electrode that extends from the drain electrode, and a connection wiring that extends from the source electrode, and connects the first data line to the second data line through the first and second openings of the gate insulating layer.
Abstract:
A display substrate and a method for manufacturing a display substrate are disclosed. In the method, a gate electrode is formed on a base substrate. An active pattern is formed using an oxide semiconductor. The active pattern partially overlaps the gate electrode. A first insulation layer pattern and a second insulation layer pattern are sequentially formed on the active pattern. The first insulation layer pattern and the second insulation layer pattern overlap the gate electrode. A third insulation layer is formed to cover the active pattern, the first insulation layer pattern and the second insulation layer pattern. Either the first insulation layer pattern or the second insulation layer pattern includes aluminum oxide. Forming the first insulation layer pattern and the second insulation layer pattern includes performing a backside exposure process using the gate electrode as an exposure mask.
Abstract:
A display substrate and a method for manufacturing a display substrate are disclosed. In the method, a gate electrode is formed on a base substrate. An active pattern is formed using an oxide semiconductor. The active pattern partially overlaps the gate electrode. A first insulation layer pattern and a second insulation layer pattern are sequentially formed on the active pattern. The first insulation layer pattern and the second insulation layer pattern overlap the gate electrode. A third insulation layer is formed to cover the active pattern, the first insulation layer pattern and the second insulation layer pattern. Either the first insulation layer pattern or the second insulation layer pattern includes aluminum oxide. Forming the first insulation layer pattern and the second insulation layer pattern includes performing a backside exposure process using the gate electrode as an exposure mask.
Abstract:
A thin film transistor (TFT), method of manufacturing the TFT and a flat panel display having the TFT are disclosed. In one aspect, the TFT comprises a substrate and an active layer formed over the substrate, wherein the active layer is formed of oxide semiconductor, and wherein the active layer includes two opposing sides. The TFT also comprises source and drain regions formed at the opposing sides of the active layer, a first insulating layer formed over the active layer, a gate electrode formed over the active layer, a second insulating layer formed covering the first insulation layer and the gate electrode, and a first conductive layer formed on the source and drain regions and contacting the second insulating layer.
Abstract:
A thin film transistor (TFT), method of manufacturing the TFT and a flat panel display having the TFT are disclosed. In one aspect, the TFT comprises a substrate and an active layer formed over the substrate, wherein the active layer is formed of oxide semiconductor, and wherein the active layer includes two opposing sides. The TFT also comprises source and drain regions formed at the opposing sides of the active layer, a first insulating layer formed over the active layer, a gate electrode formed over the active layer, a second insulating layer formed covering the first insulation layer and the gate electrode, and a first conductive layer formed on the source and drain regions and contacting the second insulating layer.
Abstract:
A thin film transistor (TFT) array substrate includes a substrate, a gate electrode, a gate line, a first data line, and a second data line on the substrate, a gate insulating layer that covers the gate electrode and the gate line and includes a first opening that exposes a portion of the first data line and a second opening that exposes a portion of the second data line, an active layer disposed on the gate insulating layer so that at least one portion of the active layer overlaps the gate electrode, a drain electrode and a source electrode that extend from opposite sides of the active layer, a pixel electrode that extends from the drain electrode, and a connection wiring that extends from the source electrode, and connects the first data line to the second data line through the first and second openings of the gate insulating layer.
Abstract:
A display substrate includes an active pattern, a gate electrode, a first insulation layer and a pixel electrode. The active pattern is disposed on a base substrate. The active pattern includes a metal oxide semiconductor. The gate electrode overlaps the active pattern. The first insulation layer covers the gate electrode and the active pattern, and a contact hole is defined in the first insulation layer. The pixel electrode is electrically connected to the active pattern via the contact hole penetrating the first insulation layer. A first angle defined by a bottom surface of the first insulation layer and a sidewall of the first insulation layer exposed by the contact hole is between about 30° and about 50°.
Abstract:
A switching element includes an active pattern including a channel portion, a source portion connected to the channel portion, and a drain portion connected to the channel portion, the source portion, a gate electrode overlapping the channel portion of the active pattern, a gate insulation layer disposed between the channel portion of the active pattern and the gate electrode, a source electrode disposed on the source portion of the active pattern to make ohmic contact with the source portion, and a drain electrode disposed on the drain portion of the active pattern to make ohmic contact with the drain portion. The drain portion and the channel portion of the active pattern include the same or substantially the same material.
Abstract:
A display substrate includes a base substrate, a data line disposed on the base substrate, a gate line crossing the data line, a first insulation layer disposed on the base substrate, an active pattern disposed on the first insulation layer and comprising a channel comprising an oxide semiconductor, a source electrode connected to the channel, and a drain electrode connected to the channel, a second insulation layer disposed on the active pattern, and contacting to the source electrode and the drain electrode, a gate electrode disposed on the second insulation layer, and overlapping with the channel, a passivation layer disposed on the gate electrode and the second insulation layer, and a pixel electrode electrically connected to the drain electrode through a first contact hole formed through the passivation layer and the second insulation layer.