Abstract:
The present invention relates to a liquid crystal display including: a lower electrode including a unit pixel electrode; an upper electrode including an upper unit electrode facing the unit pixel electrode; and a liquid crystal layer between the lower electrode and the upper electrode and including a plurality of liquid crystal molecules aligned approximately perpendicular to the surfaces of the lower electrode and the upper electrode in the absence of an electric field, wherein the unit pixel electrode includes a stem forming a boundary between a plurality of sub-regions and a plurality of minute branches extending in different directions in two different sub-regions, the upper unit electrode includes an opening facing the stem and extending parallel to the stem, any alignment aid to pretilt the liquid crystal molecules is absent, and a length of the minute branches is equal to or less than about 53 μm.
Abstract:
An exemplary embodiment provides a driving circuit chip including: a substrate; a terminal electrode disposed on the substrate; and an electrode pad disposed on the terminal electrode, wherein the electrode pad includes: a bump structure protruded from the substrate to include a short side and a long side; and a bump electrode disposed on the bump structure and connected with the terminal electrode around a short edge portion of the bump structure, wherein the bump electrode is disposed to not cover at least a part of a long edge portion of the bump structure.
Abstract:
A liquid crystal display (LCD) according to an exemplary embodiment of the present invention includes: a lower panel having a pixel electrode including at least one unit pixel electrode; an upper panel having a common electrode including at least one unit common electrode; and a liquid crystal layer interposed between the lower and upper panels. The unit pixel electrode includes an at least approximately diagonally oriented and parallelogram-shaped center electrode, and further includes a plurality of branches extending from the center electrode, and the common electrode includes an opening extending in a first direction corresponding to a direction of bending of the LCD.
Abstract:
A display device includes: a first substrate; a second substrate; first signal lines on the first substrate; second signal lines on the second substrate; first lateral wires on a lateral side of a first edge of the first substrate, and connected to end portions of the first signal lines; and second lateral wires on a lateral side of a second edge of the second substrate, and connected to end portions of the second signal lines. The first and second lateral wires are located in at least one first region and at least one second region, the at least one first region and the at least one second region being spaced from each other on the lateral sides of the first substrate and the second substrate. The at least one first region includes the first lateral wires, and the at least one second region includes the second lateral wires.
Abstract:
The present invention relates to a liquid crystal display including: a lower electrode including a unit pixel electrode; an upper electrode including an upper unit electrode facing the unit pixel electrode; and a liquid crystal layer between the lower electrode and the upper electrode and including a plurality of liquid crystal molecules aligned approximately perpendicular to the surfaces of the lower electrode and the upper electrode in the absence of an electric field, wherein the unit pixel electrode includes a stem forming a boundary between a plurality of sub-regions and a plurality of minute branches extending in different directions in two different sub-regions, the upper unit electrode includes an opening facing the stem and extending parallel to the stem, any alignment aid to pretilt the liquid crystal molecules is absent, and a length of the minute branches is equal to or less than about 53 μm.
Abstract:
Provided herein may be an electronic device. The electronic device may include a substrate provided with a plurality of connecting pads including a first metal, a semiconductor chip on an area of the substrate, facing the connecting pads, and including a base substrate including a first surface facing the substrate, and a second surface opposite the first surface, a plurality of connecting terminals on the first surface, facing the connecting pads, and including a second metal, and a non-adhesive polymer layer on the second surface, and a conductive joining layer electrically connecting, and interposed between, respective ones of the connecting pads to the connecting terminals, and including a diffusion layer in which the first metal and the second metal are mixed.
Abstract:
A display device includes: a display panel including a plurality of pad electrodes arranged in a first direction; a printed circuit board including a plurality of lead electrodes facing the plurality of pad electrodes, respectively; a plurality of conductive particles disposed between the display panel and the printed circuit board at predetermined intervals; and a coating layer disposed on the plurality of conductive particles and having a thickness varying in the first direction from each of the plurality of lead electrodes toward each of the plurality of pad electrodes.
Abstract:
A display device includes: a first substrate; a second substrate; first signal lines on the first substrate; second signal lines on the second substrate; first lateral wires on a lateral side of a first edge of the first substrate, and connected to end portions of the first signal lines; and second lateral wires on a lateral side of a second edge of the second substrate, and connected to end portions of the second signal lines. The first and second lateral wires are located in at least one first region and at least one second region, the at least one first region and the at least one second region being spaced from each other on the lateral sides of the first substrate and the second substrate. The at least one first region includes the first lateral wires, and the at least one second region includes the second lateral wires.
Abstract:
A chip-on-film (COF) package includes a film, a driver integrated circuit (IC) chip disposed on the film, an electrode pad disposed on an edge of the film, and a first deformation-preventing member disposed on the film, between the driver IC chip and the electrode pad.
Abstract:
The present invention relates to a liquid crystal display including: a lower electrode including a unit pixel electrode; an upper electrode including an upper unit electrode facing the unit pixel electrode; and a liquid crystal layer between the lower electrode and the upper electrode and including a plurality of liquid crystal molecules aligned approximately perpendicular to the surfaces of the lower electrode and the upper electrode in the absence of an electric field, wherein the unit pixel electrode includes a stem forming a boundary between a plurality of sub-regions and a plurality of minute branches extending in different directions in two different sub-regions, the upper unit electrode includes an opening facing the stem and extending parallel to the stem, any alignment aid to pretilt the liquid crystal molecules is absent, and a length of the minute branches is equal to or less than about 53 μm.