Abstract:
A display device may include a first base, a metal oxide layer overlapping a face of the first base, and a conductive metal layer directly contacting the metal oxide layer. The metal oxide layer may include molybdenum oxide. A side of the metal oxide layer may be oriented at a first angle relative to the face of the first base. A side of the conductive metal layer may be oriented at a second angle relative to the face of the first base. A size of the second angle may be in a range of 30° to 75°.
Abstract:
An exemplary embodiment of the present invention provides a thin film transistor array panel and an organic light emitting diode display including the same including a substrate, a semiconductor disposed on the substrate, a first gate insulation layer disposed on the semiconductor, and a first diffusion barrier layer disposed on the first gate insulation layer. A second diffusion barrier layer is disposed on a lateral surface of the first diffusion barrier layer. A first gate electrode is disposed on the first diffusion barrier layer. A source electrode and a drain electrode are connected to the semiconductor. The first diffusion barrier layer comprises a metal, and the second diffusion barrier layer comprises a metal oxide including the metal.
Abstract:
A wire substrate, a display device including a wire substrate, and a method of fabricating a wire substrate are disclosed. The display device comprises: a first base; and a first wiring layer disposed on the first base and comprising a conductive metal layer and a metal oxide layer stacked on one another, wherein the metal oxide layer comprises MoxTayOz, wherein a content of tantalum is equal to or less than 2.0 at % (atomic percent) based on a total number of metal atoms.
Abstract:
An exemplary embodiment of the present invention provides a thin film transistor array panel and an organic light emitting diode display including the same including a substrate, a semiconductor disposed on the substrate, a first gate insulation layer disposed on the semiconductor, and a first diffusion barrier layer disposed on the first gate insulation layer. A second diffusion barrier layer is disposed on a lateral surface of the first diffusion barrier layer. A first gate electrode is disposed on the first diffusion barrier layer. A source electrode and a drain electrode are connected to the semiconductor. The first diffusion barrier layer comprises a metal, and the second diffusion barrier layer comprises a metal oxide including the metal.
Abstract:
A wire substrate, a display device including a wire substrate, and a method of fabricating a wire substrate are disclosed. The display device comprises: a first base; and a first wiring layer disposed on the first base and comprising a conductive metal layer and a metal oxide layer stacked on one another, wherein the metal oxide layer comprises MoxTayOz, wherein a content of tantalum is equal to or less than 2.0 at % (atomic percent) based on a total number of metal atoms.
Abstract:
A transistor includes a gate electrode, a semiconductor layer overlapping the gate electrode, the semiconductor layer including an oxide semiconductor, and a source electrode and a drain electrode spaced apart from the source electrode, wherein the source and drain electrodes are connected to the semiconductor layer. The semiconductor layer includes a plurality of layers, wherein a crystallinity of a layer of the plurality of layers of the semiconductor layer is a ratio of a crystalline oxide semiconductor, included in the layer of the plurality of layers of the semiconductor layer, to an amorphous oxide semiconductor, included in the layer of the plurality of layers of the semiconductor layer. A first layer of the plurality of layers of the semiconductor layer has a different crystallinity with respect to a second layer of the plurality of layers of the semiconductor layer.
Abstract:
An oxide sputtering target includes at least one of indium (In), zinc (Zn), tin (Sn), and gallium (Ga), and tungsten (W) in an amount from 0.005 mol % to 1 mol %.
Abstract:
A thin film transistor array panel includes a substrate and a gate line disposed on the substrate, The gate line includes a gate electrode. A gate insulating layer is disposed on the gate line. An oxide semiconductor layer is disposed on the gate insulating layer. The oxide semiconductor layer at least partially overlaps the gate electrode. A data line is disposed on the oxide semiconductor layer. The data line includes a source electrode and a drain electrode facing the source electrode. The oxide semiconductor layer includes tungsten, indium, zinc, or tin.
Abstract:
Provided is a display device. The display device includes: a substrate; a gate line disposed on the substrate; a transistor including a part of the gate line; and a light-emitting element connected to the transistor, in which the gate line includes a first layer including aluminum or an aluminum alloy, a second layer including titanium nitride, and a third layer including metallic titanium nitride. An N/Ti molar ratio of the metallic titanium nitride may be in a range from about 0.2 to about 0.75.
Abstract:
A wire substrate, a display device including a wire substrate, and a method of fabricating a wire substrate are disclosed. The display device comprises: a first base; and a first wiring layer disposed on the first base and comprising a conductive layer and a metal oxide layer stacked on the conductive layer, wherein the metal oxide layer comprises molybdenum (Mo), tantalum (Ta), and oxygen (O). The conductive layer includes a first metal layer on the first base, and a second metal layer between the first metal layer and the metal oxide layer. The second metal layer has a higher electrical conductivity than the first metal layer, and a thickness of the second metal layer is greater than a thickness of the first metal layer.