Abstract:
Disclosed is a method of manufacturing a metal mask. A method of manufacturing a metal mask in accordance with an exemplary embodiment of the present invention includes forming through holes in a plate using a laser, by scanning the laser onto sequentially smaller overlapping portions of the plate.
Abstract:
A laser processing apparatus includes: a laser generator that generates a laser beam, a diffractive optical element that divides the laser beam generated by the laser generator into a plurality of sub-laser beams, and a beam gap adjustor that adjusts a gap between neighboring ones of the plurality of sub-laser beams. Therefore, by installing a diffractive optical element that divides a laser beam that is generated by the laser generator into the plurality of sub-laser beams and a beam gap adjustor to adjust a gap between a plurality of sub-laser beams, the laser processing apparatus can form a processing pattern of various resolutions in a shadow mask while improving a processing speed of the shadow mask.
Abstract:
A sheet cutting apparatus and a sheet cutting method using the same are disclosed. In one aspect, the sheet cutting apparatus includes a holder for rotatably supporting a sheet roll, a lamination unit for pulling and unwinding a front end of the sheet unwound from the sheet roll, a table on which the sheet unwound by the lamination parts is attached, and a tension unit for giving tension to the sheet attached on the table. Since the sheet cutting apparatus may cut the sheet consistently and stably, product quality and production efficiency should increase.
Abstract:
An organic material deposition device configured to sense a deposition amount of an organic material deposited in a vacuum chamber by detecting a back propagation characteristic variation of a passive radio frequency identification (RFID) sensor. The organic material deposition device includes: a chamber configured to perform an organic material deposition process therein; a deposition source mounted in the chamber to vaporize an organic material; a deposition mask mounted to face the deposition source and configured to bond a substrate at an opposite side to the deposition source; an antenna mounted in the chamber to receive back propagation from a radio frequency identification (RFID) sensor; and a radio frequency (RF) reader connected to the antenna to measure an organic material deposition amount from a variation of the back propagation.
Abstract:
A metal sheet holding device for manufacturing a pattern mask used in manufacturing processes of a flat panel displays include a first holder and second holder. The first holder includes an adhesive layer contacting edge portions of a metal sheet, and a first frame supporting the metal sheet using the adhesive layer. The second holder includes a second frame below the first frame, a supported plate positioned at the center of the second frame, and an adhered unit positioned between the central portion of a metal sheet and the supported plate. The adhered unit generates an electrostatic force or a magnetic force to hold the central portion of the metal sheet.
Abstract:
A laser processing apparatus includes a laser generator for generating laser beams, a diffraction optic element for dividing the laser beam generated by the laser generator into a plurality of sub-laser beams, and a beam number controller for controlling the number of the plurality of sub-laser beams. Accordingly, the diffractive optic element that splits a laser beam generated by the laser beam generator into a plurality of sub-laser beams and the beam number controller that controls the number of sub-laser beams are provided so that the processing speed of a processing target can be improved and, at the same time, the number of laser beams can be promptly controlled, thereby promptly forming various patterns of the processing target.
Abstract:
A laser processing apparatus includes a laser generator for generating laser beams, a diffraction optic element for dividing the laser beam generated by the laser generator into a plurality of sub-laser beams, and a beam number controller for controlling the number of the plurality of sub-laser beams. Accordingly, the diffractive optic element that splits a laser beam generated by the laser beam generator into a plurality of sub-laser beams and the beam number controller that controls the number of sub-laser beams are provided so that the processing speed of a processing target can be improved and, at the same time, the number of laser beams can be promptly controlled, thereby promptly forming various patterns of the processing target.
Abstract:
A metal sheet holding device for manufacturing a pattern mask used in manufacturing processes of a flat panel displays include a first holder and second holder. The first holder includes an adhesive layer contacting edge portions of a metal sheet, and a first frame supporting the metal sheet using the adhesive layer. The second holder includes a second frame below the first frame, a supported plate positioned at the center of the second frame, and an adhered unit positioned between the central portion of a metal sheet and the supported plate. The adhered unit generates an electrostatic force or a magnetic force to hold the central portion of the metal sheet.
Abstract:
A laser processing apparatus includes a laser generator for generating laser beams, a diffraction optic element for dividing the laser beam generated by the laser generator into a plurality of sub-laser beams, and a beam number controller for controlling the number of the plurality of sub-laser beams. Accordingly, the diffractive optic element that splits a laser beam generated by the laser beam generator into a plurality of sub-laser beams and the beam number controller that controls the number of sub-laser beams are provided so that the processing speed of a processing target can be improved and, at the same time, the number of laser beams can be promptly controlled, thereby promptly forming various patterns of the processing target.
Abstract:
A sheet cutting apparatus and a sheet cutting method using the same are disclosed. In one aspect, the sheet cutting apparatus includes a holder for rotatably supporting a sheet roll, a lamination unit for pulling and unwinding a front end of the sheet unwound from the sheet roll, a table on which the sheet unwound by the lamination parts is attached, and a tension unit for giving tension to the sheet attached on the table. Since the sheet cutting apparatus may cut the sheet consistently and stably, product quality and production efficiency should increase.