Abstract:
A hybrid inductor includes an inductor body having a core part in which a coil part is disposed, and first and second cover parts having the core part interposed therebetween. The core part includes magnetic metal layers, and the first and second cover parts include ferrite layers.
Abstract:
A tantalum capacitor includes: a tantalum body comprising tantalum powder and a tantalum wire exposed to one end surface; an anode lead frame comprising a first electrode member and a second electrode member bent perpendicularly thereto; a cathode electrode lead frame comprising a third electrode member spaced apart from the first electrode member having the tantalum body mounted on an upper surface thereof and a fourth electrode member bent perpendicularly thereto; and a encapsulation portion covering the tantalum body so that lower surfaces of the first and third electrode members and one external surfaces of the second and fourth electrode members are exposed. The anode lead frame comprises a bend portion having a connection part of the first electrode member and the second electrode member as an axis, and an end of the bend portion is in contact with the tantalum wire.
Abstract:
A composite electronic component includes a composite body including a capacitor and an inductor bonded to each other; an input terminal disposed on a first end surface of the composite body and connected to the coil part of the inductor; an output terminal including a first output terminal disposed on a second end surface of the composite body and connected to the coil part of the inductor and a second output terminal disposed on the second end surface of the composite body and connected to the first internal electrodes of the capacitor; and a ground terminal disposed on the first end surface of the composite body and connected to the second internal electrodes of the capacitor. A bonded surface between the inductor and the capacitor is provided with insulating layers.
Abstract:
There are provided an inductor array chip and a board having the same. The inductor array chip includes: a body in which a plurality of magnetic layers are stacked; first and second coil parts having a plurality of conductive patterns and a plurality of conductive vias formed in the plurality of magnetic layers; and first to fourth external electrodes disposed on outer surfaces of the body to be connected to both ends of the first and second coil parts, wherein the first and second coil parts are disposed in a thickness direction of the body and are separated from each other by a gap layer disposed therebetween.
Abstract:
Disclosed herein is an inductor including a ceramic main body on which a first ceramic sheet on which a primary conductor pattern is formed and a second ceramic sheet on which a secondary conductor pattern is formed are alternately stacked; a first via passing through the second ceramic sheet and connecting the primary conductor pattern; and a second via passing through the first ceramic sheet and connecting the secondary conductor pattern, so as to reinforce an electromagnetic coupling of primary and secondary coils.
Abstract:
A tantalum capacitor includes a tantalum body having a tantalum wire exposed from one surface; a positive electrode terminal including a first electrode portion connected to the tantalum wire and a second electrode portion connected to be perpendicular to the first electrode portion; wherein the first electrode portion includes a first protrusion disposed in a tantalum wire direction, and the tantalum wire includes a first groove disposed in a tantalum body direction, wherein the first groove and the first protrusion are connected to each other.
Abstract:
A hybrid inductor includes an inductor body having a core part in which a coil part is disposed, and first and second cover parts having the core part interposed therebetween. The core part includes magnetic metal layers, and the first and second cover parts include ferrite layers.
Abstract:
A composite electronic component includes a multilayer capacitor including external electrodes, a tantalum capacitor disposed adjacently to the multilayer capacitor, first electrode parts connected to the external electrodes, a second electrode part connected to a second body, and an encapsulant encapsulating the multilayer capacitor and the tantalum capacitor and formed such that portions of the first and second electrode parts are exposed.
Abstract:
A composite electronic component includes a multilayer ceramic capacitor including a ceramic body in which dielectric layers and internal electrodes are alternately disposed, and first and second external electrodes disposed on a lower surface of the ceramic body; a tantalum capacitor including a body portion containing a sintered material of a tantalum powder and a tantalum wire having a portion embedded in the body portion, and disposed on the multilayer ceramic capacitor; and an encapsulant part enclosing the tantalum capacitor and the multilayer ceramic capacitor, wherein the internal electrodes are led to the lower surface of the ceramic body.
Abstract:
A composite electronic component includes: a composite body having a capacitor and an inductor coupled to each other, the capacitor including a ceramic body in which a plurality of dielectric layers and first and second internal electrodes disposed to oppose each other with each of the dielectric layers interposed therebetween are stacked, and the inductor including a magnetic body including a coil part; an input terminal disposed on a first side surface of the composite body; an output terminal including a first output terminal disposed on a second side surface of the composite body and a second output terminal disposed on the second side surface of the composite body; and a ground terminal disposed on the first side surface of the composite body.