Abstract:
A method for providing a magnetic junction usable in a magnetic device and a magnetic junction are described. A reference layer, a crystalline MgO tunneling barrier layer and a free layer are provided. The crystalline MgO tunneling barrier layer is continuous, has a (001) orientation and has a thickness of not more than eleven Angstroms and not less than two Angstroms. The crystalline MgO tunneling barrier layer is between the free layer and the reference layer. The magnetic junction is configured such that the free layer is switchable between stable magnetic states when a write current is passed through the magnetic junction.
Abstract:
A method for providing a magnetic junction usable in a magnetic device and a magnetic junction are described. A reference layer, a crystalline MgO tunneling barrier layer and a free layer are provided. The crystalline MgO tunneling barrier layer is continuous, has a (001) orientation and has a thickness of not more than eleven Angstroms and not less than two Angstroms. The crystalline MgO tunneling barrier layer is between the free layer and the reference layer. The magnetic junction is configured such that the free layer is switchable between stable magnetic states when a write current is passed through the magnetic junction.
Abstract:
A method and system provide a magnetic junction usable in a magnetic device. The magnetic junction includes a pinned layer, a nonmagnetic spacer layer, and a free layer. The nonmagnetic spacer layer is between the pinned layer and the free layer. The free layer includes a plurality of subregions. Each of the subregions has a magnetic thermal stability constant. The subregions are ferromagnetically coupled such that the free layer has a total magnetic thermal stability constant. The magnetic thermal stability constant is such that the each of the subregions is magnetically thermally unstable at an operating temperature. The total magnetic thermal stability constant is such that the free layer is magnetically thermally stable at the operating temperature. The magnetic junction is configured such that the free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction.
Abstract:
A method and system provide a magnetic junction usable in a magnetic device. The magnetic junction includes a pinned layer, a nonmagnetic spacer layer, and a free layer. The nonmagnetic spacer layer is between the pinned layer and the free layer. The free layer includes a plurality of subregions. Each of the subregions has a magnetic thermal stability constant. The subregions are ferromagnetically coupled such that the free layer has a total magnetic thermal stability constant. The magnetic thermal stability constant is such that the each of the subregions is magnetically thermally unstable at an operating temperature. The total magnetic thermal stability constant is such that the free layer is magnetically thermally stable at the operating temperature. The magnetic junction is configured such that the free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction.