Abstract:
A semiconductor light-emitting device, and a method of manufacturing the same. The semiconductor light-emitting device includes a first electrode layer, an insulating layer, a second electrode layer, a second semiconductor layer, an active layer, and a first semiconductor layer that are sequentially stacked on a substrate, a first contact that passes through the substrate to be electrically connected to the first electrode layer, and a second contact that passes through the substrate, the first electrode layer, and the insulating layer to communicate with the second electrode layer. The first electrode layer is electrically connected to the first semiconductor layer by filling a contact hole that passes through the second electrode layer, the second semiconductor layer, and the active layer, and the insulating layer surrounds an inner circumferential surface of the contact hole to insulate the first electrode layer from the second electrode layer.
Abstract:
A semiconductor light-emitting device, and a method of manufacturing the same. The semiconductor light-emitting device includes a first electrode layer, an insulating layer, a second electrode layer, a second semiconductor layer, an active layer, and a first semiconductor layer that are sequentially stacked on a substrate, a first contact that passes through the substrate to be electrically connected to the first electrode layer, and a second contact that passes through the substrate, the first electrode layer, and the insulating layer to communicate with the second electrode layer. The first electrode layer is electrically connected to the first semiconductor layer by filling a contact hole that passes through the second electrode layer, the second semiconductor layer, and the active layer, and the insulating layer surrounds an inner circumferential surface of the contact hole to insulate the first electrode layer from the second electrode layer.
Abstract:
A semiconductor light-emitting device includes a contact layer. The contact layer has the composition ratio of Al elements which varies gradually therein. A region formed by an Al element in the contact layer of the semiconductor light-emitting device may improve light extraction efficiency of the light emitted from an active layer and facilitate a formation of the reflective electrode.
Abstract:
An ultraviolet (UV) light-emitting diode including an n-type semiconductor layer, an active layer disposed on the n-type semiconductor layer, a p-type semiconductor layer disposed on the active layer and formed of p-type AlGaN, and a p-type graphene layer disposed on the p-type semiconductor layer and formed of graphene doped with a p-type dopant. The UV light-emitting diode has improved light emission efficiency by lowering contact resistance with the p-type semiconductor layer and maximizing UV transmittance.
Abstract:
A semiconductor light-emitting device, and a method of manufacturing the same. The semiconductor light-emitting device includes a first electrode layer, an insulating layer, a second electrode layer, a second semiconductor layer, an active layer, and a first semiconductor layer that are sequentially stacked on a substrate, a first contact that passes through the substrate to be electrically connected to the first electrode layer, and a second contact that passes through the substrate, the first electrode layer, and the insulating layer to communicate with the second electrode layer. The first electrode layer is electrically connected to the first semiconductor layer by filling a contact hole that passes through the second electrode layer, the second semiconductor layer, and the active layer, and the insulating layer surrounds an inner circumferential surface of the contact hole to insulate the first electrode layer from the second electrode layer.
Abstract:
The present application relates to a light-emitting device and method of manufacturing the same. The device includes a lower portion, and vertical light-emitting structures disposed on the lower portion. A conductive member partially surrounds the vertical light-emitting structures, and reflective members are disposed between the vertical light-emitting structures. The reflective members reflect light that is emitted in a lateral direction from the vertical light-emitting structures to minimize the number of times that light emitted in a lateral direction from the vertical light-emitting structure is transmitted through the light-absorbing member, thereby increasing a luminous efficiency.
Abstract:
The present application relates to a light-emitting device and method of manufacturing the same. The device includes a lower portion, and vertical light-emitting structures disposed on the lower portion. A conductive member partially surrounds the vertical light-emitting structures, and reflective members are disposed between the vertical light-emitting structures. The reflective members reflect light that is emitted in a lateral direction from the vertical light-emitting structures to minimize the number of times that light emitted in a lateral direction from the vertical light-emitting structure is transmitted through the light-absorbing member, thereby increasing a luminous efficiency.
Abstract:
An ultraviolet (UV) light-emitting diode including an n-type semiconductor layer, an active layer disposed on the n-type semiconductor layer, a p-type semiconductor layer disposed on the active layer and formed of p-type AlGaN, and a p-type graphene layer disposed on the p-type semiconductor layer and formed of graphene doped with a p-type dopant. The UV light-emitting diode has improved light emission efficiency by lowering contact resistance with the p-type semiconductor layer and maximizing UV transmittance.