Abstract:
Methods and apparatuses are provided for operating a first terminal. A motion of the first terminal is determined by using sensor data from at least one sensor of the first terminal. A prediction for a channel quality between the first terminal and a second terminal is performed based on the determined motion of the first terminal. At least one first time duration in which the predicted channel quality is greater than or equal to a threshold value and at least one second time duration in which the predicted channel quality is less than the threshold value are determined. Data is transmitted to the second terminal via a first transmission power, where the first transmission power is set for the at least one first time duration.
Abstract:
A method of sharing a resource using a virtual device driver and an electronic device thereof are provided. The method includes generating a virtual device driver, which corresponds to a real device driver of a host electronic device, in the client electronic device, receiving a resource from the host electronic device by using the virtual device driver through a first communication mechanism designated in the host electronic device, and after the first communication mechanism is changed to a second communication mechanism designated in the host electronic device, receiving the resource from the host electronic device by using the virtual device driver.
Abstract:
The present invention is to provide a method and device for controlling transmission power by taking comprehensive consideration not only of the effect received onto itself in each device-to-device (D2D) link of a D2D communication network but also of the effect exerted onto the neighboring links. According to an embodiment of the present invention, a processing method in a transmission terminal of a first link for controlling the transmission power of the transmission terminals of links in a D2D communication network, which includes terminals of at least the first link and terminals of a second link adjacent to the first link includes: measuring the strengths of first detection signals transmitted from reception terminals of the first link and the second link; and determining a first transmission power adjustment ratio for the transmission terminal of the first link so that a signal-to-interference ratio of the second link is greater than or equal to a predetermined threshold value on the basis of the measured strengths of the first detection signals.
Abstract:
According to various examples, a method for providing, in an electronic device, an image can comprise the steps of: obtaining a first image of a subject by using a camera functionally connected to the electronic device; generating at least one image comprising a second image to be related to the first image; and concurrently displaying the first image on a first region of a display functionally connected to the electronic device, and the second image on a second region of the display.
Abstract:
An optical coupler includes a tapered portion and a grating portion. The tapered portion has a width in a second direction increasing along a first direction substantially perpendicular to the second direction. The tapered portion includes first and second ends opposed to each other in the first direction. The first end has a first width, and the second end has a second width greater than the first width. The grating portion is connected to the second end of the tapered portion, and has a curvature radius greater than a distance to the first end of the tapered portion.
Abstract:
A method for providing a service by an electronic device according to various embodiments may comprise the steps of: obtaining biometric information of a user; determining at least one service associated with the biometric information out of a plurality of services that the electronic device supports; and providing the determined at least one service.
Abstract:
A semiconductor device includes a fin portion protruding from a substrate. The fin portion includes a base part, an intermediate part on the base part, and a channel part on the intermediate part. A width of the intermediate part is less than a width of the base part and greater than a width of the channel part. A gate electrode coves both sidewalls and a top surface of the channel part, and a device isolation pattern covers both sidewalls of the base part and both sidewalls of the intermediate part.
Abstract:
Methods and apparatuses are provided method for operating a terminal. A motion pattern of at least one of the terminal or a peer terminal communicating with the terminal is determined in a time interval. A channel quality of a channel between the terminal and the peer terminal is determined in time intervals after the time interval based on the motion pattern in the time interval. At least one first time interval among the time intervals in which the channel quality is greater than or equal to a threshold value and at least one second time interval among the time intervals in which the channel quality is less than the threshold value are determined. Data in the at least one first time interval is transmitted to the peer terminal.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE).A method for providing a device-to-device (D2D) communication-based service for an isolated user equipment (IUE) by a relay user equipment (RUE) in a mobile communication system is provided. The method includes establishing a D2D link with an IUE; and supporting establishment of a relay cellular link for the IUE based on the established D2D link, wherein the RUE is within a service coverage of an enhanced node B (eNB).
Abstract:
A method of operating a first terminal is provided. The method includes detecting a signal pattern according to motion of the first terminal by a sensor included in the first terminal, wherein the signal pattern corresponds to a pattern of wireless channel quality between the first terminal and a second terminal; predicting the wireless channel quality between the first terminal and the second terminal using the signal pattern detected by the sensor; and allocating a resource for transmitting data to the second terminal on the basis of the predicted channel quality.