Abstract:
A semiconductor device can include a substrate including a plurality of active regions having a long axis in a first direction and a short axis in a second direction, the plurality of active regions being repeatedly and separately positioned along the first and second directions, an isolation film defining the plurality of active regions, a plurality of word lines extending across the plurality of active regions and the isolation film, and a positive fixed charge containing layer covering at least a portion of the plurality of word lines, respectively.
Abstract:
Methods of fabricating semiconductor device are provided including forming first through third silicon crystalline layers on first through third surfaces of an active region; removing the first silicon crystalline layer to expose the first surface; forming a bit line stack on the exposed first surface; forming bit line sidewall spacers on both side surfaces of the bit line stack to be vertically aligned with portions of the second and third silicon crystalline layers of the active region; removing the second and third silicon crystalline layers disposed under the bit line sidewall spacers to expose the second and third surfaces of the active region; and forming storage contact plugs in contact with the second and third surfaces of the active region.
Abstract:
A semiconductor device includes a field regions in a substrate to define active regions, gate trenches including active trenches disposed across the active region and field trenches in the field regions, and word lines that fill the gate trenches and extend in a first direction. The word lines include active gate electrodes occupying the active trenches, and field gate electrodes occupying the field trenches. The bottom surface of each field gate electrode, which is disposed between active regions that are adjacent to each other and have one word line therebetween, is disposed at a higher level than the bottom surfaces of the active gate electrodes.
Abstract:
A semiconductor device can include a substrate including a plurality of active regions having a long axis in a first direction and a short axis in a second direction, the plurality of active regions being repeatedly and separately positioned along the first and second directions, an isolation film defining the plurality of active regions, a plurality of word lines extending across the plurality of active regions and the isolation film, and a positive fixed charge containing layer covering at least a portion of the plurality of word lines, respectively.
Abstract:
A semiconductor device includes a field regions in a substrate to define active regions, gate trenches including active trenches disposed across the active region and field trenches in the field regions, and word lines that fill the gate trenches and extend in a first direction. The word lines include active gate electrodes occupying the active trenches, and field gate electrodes occupying the field trenches. The bottom surface of each field gate electrode, which is disposed between active regions that are adjacent to each other and have one word line therebetween, is disposed at a higher level than the bottom surfaces of the active gate electrodes.
Abstract:
Methods of fabricating semiconductor device are provided including forming first through third silicon crystalline layers on first through third surfaces of an active region; removing the first silicon crystalline layer to expose the first surface; forming a bit line stack on the exposed first surface; forming bit line sidewall spacers on both side surfaces of the bit line stack to be vertically aligned with portions of the second and third silicon crystalline layers of the active region; removing the second and third silicon crystalline layers disposed under the bit line sidewall spacers to expose the second and third surfaces of the active region; and forming storage contact plugs in contact with the second and third surfaces of the active region.