Abstract:
An optoelectronic device includes a first electrode and a second electrode facing each other, a photoelectric conversion layer between the first electrode and the second electrode, and a buffer layer between at least one of the photoelectric conversion layer and the first electrode, and the photoelectric conversion layer and the second electrode, the buffer layer including one of MoOx1 (2.58≦x1
Abstract:
A metal-air battery includes an anode portion including a metal; a cathode portion including a porous layer, wherein the porous layer includes a reduced non-stacked graphene oxide; and an electrolyte disposed between the anode portion and the cathode portion.
Abstract:
Provided are methods for analyzing a surface of a sample using a scanning probe microscope including a cell-attached probe and scanning probe microscopes therefor.
Abstract:
A metal-air battery includes an anode portion including a metal; a cathode portion including a porous layer, wherein the porous layer includes a reduced non-stacked graphene oxide; and an electrolyte disposed between the anode portion and the cathode portion.
Abstract:
An optoelectronic device includes a first electrode and a second electrode facing each other a photoelectric conversion layer between the first electrode and the second electrode and a buffer layer between the photoelectric conversion layer and the second electrode. The buffer layer includes a nitride. The nitride includes one of silicon nitride (SiNx, 0
Abstract:
A quantum dot including a semiconductor nanocrystal core including Group III-V compound, a first semiconductor nanocrystal shell disposed on the semiconductor nanocrystal core, the first semiconductor nanocrystal shell including zinc and selenium, and a second semiconductor nanocrystal shell disposed on the first semiconductor nanocrystal shell, the second semiconductor nanocrystal shell including zinc and sulfur, and a composite/electronic device. The quantum dot does not include cadmium and the first semiconductor nanocrystal shell includes a polyvalent metal dopant at an interface with the second semiconductor nanocrystal shell.
Abstract:
An optoelectronic device includes a first electrode and a second electrode facing each other a photoelectric conversion layer between the first electrode and the second electrode and a buffer layer between the photoelectric conversion layer and the second electrode. The buffer layer includes a nitride. The nitride includes one of silicon nitride (SiNx, 0
Abstract:
A negative electrode-solid electrolyte sub-assembly for an all-solid secondary battery, the sub-assembly including: a negative electrode current collector; a first negative active material layer on the current collector; an interlayer on the first negative active material layer; and a solid electrolyte on the interlayer and opposite the first negative active material layer, wherein the interlayer includes a composite including a first metal material and a lithium ion conductor, wherein the first metal material includes a first metal, an alloy including the first metal and lithium, a compound including the first metal and lithium, or a combination thereof, wherein the first negative active material layer includes a carbonaceous negative active material, and optionally a first negative active material including a second metal, a metalloid, or a combination thereof.
Abstract:
A conductor includes a plurality of metal nanostructures and an organic material, where a portion of the organic material surrounding each of the metal nanostructures is selectively removed, and the conductor has a haze of less than or equal to about 1.1, a light transmittance of greater than or equal to about 85% at about 550 nm, and a sheet resistance of less than or equal to about 100 Ω/sq. An electronic device includes the conductor, and a method of manufacturing a conductor includes preparing a conductive film including a metal nanostructure and an organic material, and selectively removing the organic material from the conductive film using a cluster ion beam sputtering.
Abstract:
A nanocrystal represented by the following Formula 1 and a preparation method thereof: AMX3L Formula 1 wherein A is cesium (Cs), rubidium (Rb), or an ammonium salt, M is germanium (Ge), tin (Sn), or lead (Pb), X is one or more selected from Cl, Br and I, and L is an organic functional group having one terminal selected from a phosphonic acid group, a carboxylic acid group, and an amino group.