Abstract:
A high electron mobility transistor (HEMT) according to example embodiments includes a first semiconductor layer, a second semiconductor layer on the first semiconductor layer, and a reverse diode gate structure on the second semiconductor layer. A source and a drain may be on at least one of the first semiconductor layer and the second semiconductor layer. A gate electrode may be on the reverse diode gate structure.
Abstract:
Provided are high electron mobility transistors (HEMTs), methods of manufacturing the HEMTs, and electronic devices including the HEMTs. An HEMT may include an impurity containing layer, a partial region of which is selectively activated. The activated region of the impurity containing layer may be used as a depletion forming element. Non-activated regions may be disposed at opposite side of the activated region in the impurity containing layer. A hydrogen content of the activated region may be lower than the hydrogen content of the non-activated region. In another example embodiment, an HEMT may include a depletion forming element that includes a plurality of regions, and properties (e.g., doping concentrations) of the plurality of regions may be changed in a horizontal direction.
Abstract:
A gallium nitride based semiconductor device includes a silicon-based layer doped simultaneously with boron (B) and germanium (Ge) at a relatively high concentration, a buffer layer on the silicon-based layer, and a nitride stack on the buffer layer. A doping concentration of boron (B) and germanium (Ge) may be higher than 1×1019/cm3.
Abstract:
According to example embodiments, a high electron mobility transistor includes: a channel layer including a 2-dimensional electron gas (2DEG); a contact layer on the channel layer; a channel supply layer on the contact layer; a gate electrode on a portion of the channel layer; and source and drain electrodes on at least one of the channel layer, the contact layer, and the channel supply layer. The contact layer is configured to form an ohmic contact on the channel layer. The contact layer is n-type doped and contains a Group III-V compound semiconductor. The source electrode and the drain electrode are spaced apart from opposite sides of the gate electrode.
Abstract:
A semiconductor buffer structure may include a silicon substrate and a buffer layer that is formed on the silicon substrate. The buffer layer may include a first layer, a second layer formed on the first layer, and a third layer formed on the second layer. The first layer may include AlxInyGa1-x-yN (0≦x≦1, 0≦y≦1, 0≦x+y≦1) and have a lattice constant LP1 that is smaller than a lattice constant LP0 of the silicon substrate. The second layer may include AlxInyGa1-x-yN (0≦x
Abstract translation:半导体缓冲结构可以包括硅衬底和形成在硅衬底上的缓冲层。 缓冲层可以包括第一层,形成在第一层上的第二层和形成在第二层上的第三层。 第一层可以包括比硅衬底的晶格常数LP0小的晶格常数LP1的Al x In y Ga 1-x-y N(0&n 1; x&n 1; 1,0&amp; n 1; y&n 1 E; 1,0& 第二层可以包括Al x In y Ga 1-x-y N(0&nlE; x <1,0&lt; nlE; y <1,0&amp; nlE; x + y <1),并且具有大于晶格常数LP1并且小于晶格的晶格常数LP2 常数LP0。 第三层可以包括Al x In y Ga 1-x-y N(0&nlE; x <1,0&lt; nlE; y <1,0&amp; nlE; x + y <1),并且具有大于晶格常数LP1并且小于晶格的晶格常数LP3 常数LP2。