Abstract:
A light emitting device package includes a cell array having a first surface and a second surface located opposite to the first surface and including, on a portion of a horizontal extension line of the first surface, semiconductor light emitting units each including a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer sequentially located on a layer surface including a sidewall of the first conductivity type semiconductor layer; wavelength converting units corresponding respectively to the semiconductor light emitting units and each arranged corresponding to the first conductivity type semiconductor layer; a barrier structure arranged between the wavelength converting units corresponding to the cell array; and switching units arranged in the barrier structure and electrically connected to the semiconductor light emitting units.
Abstract:
An apparatus includes a deposition chamber housing that accommodates a growth substrate, a supply nozzle to supply a deposition gas for forming a target large-size substrate on the growth substrate into the deposition chamber housing, a susceptor to support the growth substrate and expose a rear surface of the growth substrate to an etch gas, and an inner liner connected to the susceptor. The inner liner is to isolate the etch gas from the deposition gas and guide the etch gas toward the rear surface of the growth substrate. The susceptor includes a center hole that exposes the rear surface of the growth substrate and a support protrusion supporting the growth substrate, the support protrusion protruding toward the center of the center hole from an inner sidewall of the susceptor defining the center hole.
Abstract:
A light-emitting device package is provided. The light-emitting device package includes: a substrate having a first surface and a second surface, and having a first opening and a second opening spaced apart from each other; a light-emitting structure disposed on the first surface of the substrate and vertically overlapping the first opening; and an image sensor including a photoelectric conversion region, the photoelectric conversion region being disposed in the substrate and vertically overlapping the second opening. Light from the light-emitting structure is emitted toward the second surface of the substrate through the first opening.
Abstract:
A semiconductor device includes a substrate, a buffer layer on the substrate, and a plurality of nitride semiconductor layers on the buffer layer. The semiconductor device further includes at least one masking layer and at least one inter layer between the plurality of nitride semiconductor layers. The at least one inter layer is on the at least one masking layer.
Abstract:
A light-emitting device package is provided. The light-emitting device package includes: a substrate having a first surface and a second surface, and having a first opening and a second opening spaced apart from each other; a light-emitting structure disposed on the first surface of the substrate and vertically overlapping the first opening; and an image sensor including a photoelectric conversion region, the photoelectric conversion region being disposed in the substrate and vertically overlapping the second opening. Light from the light-emitting structure is emitted toward the second surface of the substrate through the first opening.
Abstract:
A substrate structure and method of manufacturing the same are disclosed. The substrate structure may includes a substrate on which a plurality of protrusions are formed on one surface thereof and a plurality of buffer layers formed according to a predetermined pattern and formed spaced apart from each other on the plurality of protrusions.
Abstract:
A light emitting device package includes a cell array having a first surface and a second surface located opposite to the first surface and including, on a portion of a horizontal extension line of the first surface, semiconductor light emitting units each including a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer sequentially located on a layer surface including a sidewall of the first conductivity type semiconductor layer; wavelength converting units corresponding respectively to the semiconductor light emitting units and each arranged corresponding to the first conductivity type semiconductor layer; a barrier structure arranged between the wavelength converting units corresponding to the cell array; and switching units arranged in the barrier structure and electrically connected to the semiconductor light emitting units.
Abstract:
A light emitting device package includes a cell array having a first surface and a second surface located opposite to the first surface and including, on a portion of a horizontal extension line of the first surface, semiconductor light emitting units each including a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer sequentially located on a layer surface including a sidewall of the first conductivity type semiconductor layer; wavelength converting units corresponding respectively to the semiconductor light emitting units and each arranged corresponding to the first conductivity type semiconductor layer; a barrier structure arranged between the wavelength converting units corresponding to the cell array; and switching units arranged in the barrier structure and electrically connected to the semiconductor light emitting units.
Abstract:
A gallium nitride based semiconductor device includes a silicon-based layer doped simultaneously with boron (B) and germanium (Ge) at a relatively high concentration, a buffer layer on the silicon-based layer, and a nitride stack on the buffer layer. A doping concentration of boron (B) and germanium (Ge) may be higher than 1×1019/cm3.
Abstract:
Provided are a low-defect semiconductor device and a method of manufacturing the same. The method includes forming a buffer layer on a silicon substrate, forming an interface control layer on the buffer layer under a first growth condition, and forming a nitride stack on the interface control layer under a second growth condition different from the first growth condition.