Abstract:
A photomask and a method of forming the same, the photomask including a transparent substrate; a light shielding pattern on the transparent substrate, the light shielding pattern including molybdenum and silicon; and an etch stop layer covering at least a sidewall of the light shielding pattern, wherein the etch stop layer has an etch rate lower than an etch rate of the light shielding pattern with respect to an ammonia-based cleaning solution.
Abstract:
An exposure method includes designing a target pattern to be formed on a substrate, producing a first dose map having first dose values of beams of energy, e.g., electron beams, creating from the first dose map a second dose map having second dose values different from the first dose values, and irradiating regions of a layer of photoresist on the substrate with overlapping beams to expose the regions to doses of energy having values based on the second dose values. The photoresist layer may then be developed and used an etch mask. The etch mask may be used to etch a mask layer on a transparent substrate to form a reticle.
Abstract:
Methods of reducing registration errors of photomasks and photomasks formed using the methods are provided. The method may include forming a plurality of photomask patterns on a substrate and determining registration errors of the plurality of photomask patterns. The method may further include forming a plurality of stress-producing portions in the substrate to reduce the registration errors by considering exposure latitude variations.
Abstract:
Disclosed is an electron beam lithography method. The method comprises obtaining a target pattern having a first width to be formed on a substrate, acquiring a dose pattern including a fixed dose cell which corresponds to a region of the dose pattern with a constant dose amount of electron beam to be provided onto the substrate and a variable dose cell which corresponds to a region of the dose pattern with a variable dose amount which is varied based on the first width of the target pattern, and providing the electron beam to expose the substrate according to the dose pattern.
Abstract:
Methods of reducing registration errors of photomasks and photomasks formed using the methods are provided. The method may include forming a plurality of photomask patterns on a substrate and determining registration errors of the plurality of photomask patterns. The method may further include forming a plurality of stress-producing portions in the substrate to reduce the registration errors by considering exposure latitude variations.
Abstract:
A charged-particle beam exposure method includes providing a sample that has patterns having shot densities different from each other, using the sample to obtain pattern drift values correlated with the shot densities, and irradiating the sample with a charged-particle beam to perform an exposure process on the sample. The irradiating of the sample with the charged-particle beam is carried out while a deflection voltage, which is applied to the charged-particle beam to deflect the charged-particle beam, is corrected based on the pattern drift value corresponding to a shot density of a pattern to be formed on the sample.
Abstract:
A photomask and a method of forming the same, the photomask including a transparent substrate; a light shielding pattern on the transparent substrate, the light shielding pattern including molybdenum and silicon; and an etch stop layer covering at least a sidewall of the light shielding pattern, wherein the etch stop layer has an etch rate lower than an etch rate of the light shielding pattern with respect to an ammonia-based cleaning solution.