Abstract:
A semiconductor device and a method of manufacturing a semiconductor device, the device including gate structures on a substrate; source/drain layers on portions of the substrate that are adjacent the gate structures, respectively; first contact plugs contacting upper surfaces of the source/drain layers, respectively; a second contact plug contacting one of the gate structures, a sidewall of the second contact plug being covered by an insulating spacer; and a third contact plug commonly contacting an upper surface of at least one of the gate structures and at least one of the first contact plugs, at least a portion of a sidewall of the third contact plug not being covered by an insulating spacer.
Abstract:
A semiconductor device and a method of manufacturing a semiconductor device, the device including gate structures on a substrate; source/drain layers on portions of the substrate that are adjacent the gate structures, respectively; first contact plugs contacting upper surfaces of the source/drain layers, respectively; a second contact plug contacting one of the gate structures, a sidewall of the second contact plug being covered by an insulating spacer; and a third contact plug commonly contacting an upper surface of at least one of the gate structures and at least one of the first contact plugs, at least a portion of a sidewall of the third contact plug not being covered by an insulating spacer.
Abstract:
A layout decomposition method is provided which may include building, a graph including a plurality of nodes and edges from a layout design including a plurality of polygons, wherein the nodes correspond to the polygons of the layout design and the edges identify two nodes disposed close to each other at a distance shorter than a minimum distance among the plurality of nodes, comparing degrees of the plurality of nodes with a reference value, selecting a target node, the degree of which exceeds the reference value, identifying a first and second subgraph based on the target node, performing multi-patterning technology decomposition on the first and second subgraph to acquire a first and second result, and creating first mask layout data corresponding to one portion of the layout design and second mask layout data corresponding to the other portion of the layout design by combining the first and second result.
Abstract:
A semiconductor device and a method of manufacturing a semiconductor device, the device including gate structures on a substrate; source/drain layers on portions of the substrate that are adjacent the gate structures, respectively; first contact plugs contacting upper surfaces of the source/drain layers, respectively; a second contact plug contacting one of the gate structures, a sidewall of the second contact plug being covered by an insulating spacer; and a third contact plug commonly contacting an upper surface of at least one of the gate structures and at least one of the first contact plugs, at least a portion of a sidewall of the third contact plug not being covered by an insulating spacer.
Abstract:
A method of designing a layout of a semiconductor device includes designing layouts of cells, each layout including first conductive lines, the first conductive lines extending in a first direction and being spaced apart from each other in a second direction crossing the first direction, disposing the layouts of the cells to be adjacent to each other in the first direction, such that the first conductive lines in adjacent layouts of the cells are connected to each other, and disposing insulation blocks at a boundary area between adjacent ones of the layouts of the cells or in areas of the layouts of the cells adjacent to the boundary area, such that the insulation blocks block connections between some of the first conductive lines.
Abstract:
A layout design method may include receiving predetermined values related to first to third normal fin designs extending in a first direction and arranged in parallel in a second direction perpendicular to the first direction, generating dummy fin designs based on the predetermined values, generating mandrel candidate designs based on the first to third normal fin designs and the dummy fin designs, decomposing the mandrel candidate designs to first and second mandrel mask designs, and generating a final mandrel mask design using one of the first and second mandrel mask designs that satisfies a predetermined condition. A first interval distance in the second direction between the first normal fin design and the second normal fin design may be different from a second interval distance in the second direction between the second normal fin design and the third normal fin design.