Abstract:
A resin-rubber composite in which a polyamide-based resin-molded product or a polyphenylene sulfide-based resin-molded product is directly vulcanization-bonded to a peroxide-crosslinkable nonpolar rubber composition, which forms a rubber layer, without interposing an adhesive, wherein both resin-molded products have a polymerized film with a radical, which is formed by activating the surface of the product, in the case of polyamide-based resin-molded products, by low-pressure plasma treatment by a microwave method using inert gas, or by activating the surface of the product, in the case of polyphenylene sulfide-based resin-molded products, by low-pressure plasma treatment by a microwave method using active gas, and then performing low-pressure plasma treatment by a microwave method using a hydrocarbon-based monomer in both cases. The resin-rubber composite can be effectively used for drum seals, automobile parts such as side cover seals for transmissions, anti-vibration rubber, resin rubber laminate hoses, and the like.
Abstract:
An adhesive system including a synergistic combination of a light curable silicone-containing adhesive composition and an amine-containing primer composition that provides desirable bond strength between two articles preferably one of the articles including a polyolefin or polyolefin-based thermoplastic elastomer. Methods of connecting articles, preferably those utilized in fluid transfer applications, utilizing the adhesive system and the resulting adhered assemblies are disclosed.
Abstract:
A method for gluing of shaped bodies made of fiber composite compositions containing a plastic matrix KFZ with polyurethane compositions, the method including: a) application of IR radiation to a defined region of the shaped body of KFZ; b) application of a polyurethane composition to the defined region of the shaped body; c) bonding of the polyurethane composition on the defined region of the shaped body to a substrate; and d) curing of the polyurethane composition. The method is distinguishable by a rapid strengthening (early strength) of the polyurethane composition, so that the bond produced with its use can be machined or stressed already a short time after the application of the polyurethane composition.
Abstract:
The invention is a system, or kit, comprising i) a stable solution or dispersion of a catalyst for the curing of a reactive adhesive system; and in a separate part ii) an uncured reactive adhesive system wherein the catalyst of part i) accelerates the cure of the reactive adhesive system. The reactive adhesive system can be a one or two-part system. In another embodiment, the invention is a method of bonding a reactive adhesive to a substrate comprising: a) contacting a catalyst for the curing of the reactive adhesive in a volatile solvent with the surface of the substrate to which the adhesive will be bonded; b) allowing the volatile solvent to volatilize away; c) contacting a reactive adhesive with the surface treated in step a) and d) allowing the adhesive to cure. This process is performed in the absence of a primer and a film forming agent.
Abstract:
The present invention provides a primer for a thermoplastic and/or elastomeric substrate, the primer comprising a film of an epoxy-modified polymer selected from the group consisting of an epoxy-modified-thermoplastic polymer, an epoxy-modified-thermoplastic polymeric composite, an epoxy-modified-elastomeric polymer, an epoxy-modified-elastomeric polymeric composite, a blend thereof, and any mixture thereof. Also provided are methods of repairing, inserting, assembling and coating a thermoplastic or elastomeric substrate using the primer of the present invention.
Abstract:
A primer formulated with a colorless dye detectable only under black light is provided. The present invention is non-detectable on a porous surface and color does not appear over time upon exposure to natural or synthetic lights. Under black light, sometimes referred to as ultra violet energy or long wave black light, the colorless dye appears as purple. However, once the black light is removed, the primer ceases to glow and returns to its natural, colorless state.
Abstract:
A process is described for treating metal surfaces with a composition comprising an oxidizer, an acid, a corrosion inhibitor, a benzotriazole with an electron withdrawing group in the 1-position which electron withdrawing group is a stronger electron withdrawer than a hydrogen group, and optionally, a source of adhesion enhancing species selected from the group consisting of molybdates, tungstates, tantalates, niobates, vanadates, isopoly or heteropoly acids of molybdenum, tungsten, tantalum, niobium, vanadium, and combinations of any of the foregoing in order to increase the adhesion of polymeric materials to the metal surface.
Abstract:
In one aspect the invention provides an energy efficient polymerization method comprising irradiating a polymerizable composition and a photoinitiator with a source of essentially monochromatic radiation where the photoinitiator and the wavelength of the radiation source are selected such that the extinction coefficient of the photoinitiator at the peak wavelength of the source is greater than about 1000 M−1 cm−1 and such that the photoinitiator absorbs at least two percent of the actinic radiation incident on the coating. In another aspect the invention provides energy efficient methods of polymerizing polymerizable compositions and crosslinking crosslinkable compositions by irradiating the respective compositions with a low power source of essentially monochromatic radiation. The low power energy sources have an input power of less than about 10 W/cm. Articles made from the above methods, including polymer films having release coatings, adhesive coatings, hard coatings and the like thereon, also are provided.
Abstract:
Composite materials and methods of producing the same are provided. In some embodiments, the composite materials can comprise a polymer substrate, an intermediary material, such as a metal or oxide, mechanically attached onto the polymer substrate, and an elastomer bonded to the polymer substrate on the side of the polymer substrate comprising the intermediary materials. The elastomer can be bonded to the polymer substrate irreversibly, where the elastomer and the polymer substrate cannot be separated at their interface without breaking either the elastomer or the polymer substrate. In some embodiments, a primer and/or an epoxy can also be used. Uses of material sputtering or sputtered materials are also provided to bond a parylene substrate and silicone elastomer, or to enhance the relative strength of the bonding between the two. In addition, composite materials, and the use thereof, involving a parylene substrate, an elastomer receptacle, and liquid silicone are provided.