Abstract:
A method of manufacturing a semiconductor device, the method including forming dummy gate structures on a substrate; forming spacers on sidewalls of the dummy gate structures; forming a preliminary first interlayer insulation pattern to fill a gap between adjacent spacers; etching an upper portion of the preliminary first interlayer insulation pattern through a first etching process to form a preliminary second interlayer insulation pattern; implanting an ion on the dummy gate structures, the spacers, and the preliminary second interlayer insulation pattern through an ion-implanting process; etching an upper portion of the preliminary second interlayer insulation pattern through a second etching process to form an interlayer insulation pattern having a flat upper surface; and forming a capping pattern on the interlayer insulation pattern to fill a gap between the spacers.
Abstract:
A semiconductor device includes a gate pattern on a substrate, a multi-channel active pattern under the gate pattern to cross the gate pattern and having a first region not overlapping the gate pattern and a second region overlapping the gate pattern, a diffusion layer in the multi-channel active pattern along the outer periphery of the first region and including an impurity having a concentration, and a liner on the multi-channel active pattern, the liner extending on lateral surfaces of the first region and not extending on a top surface of the first region. Related fabrication methods are also described.
Abstract:
In methods of manufacturing a semiconductor device, a stress channel layer is formed on a semiconductor substrate. A first ion-implantation process is performed on the semiconductor substrate or the stress channel layer at a temperature ranging from about 100° C. to about 600° C. A gate structure is formed on the stress channel layer. A first source/drain region is formed at an upper portion of the stress channel layer adjacent to the gate structure.
Abstract:
A semiconductor device includes a gate pattern on a substrate, a multi-channel active pattern under the gate pattern to cross the gate pattern and having a first region not overlapping the gate pattern and a second region overlapping the gate pattern, a diffusion layer in the multi-channel active pattern along the outer periphery of the first region and including an impurity having a concentration, and a liner on the multi-channel active pattern, the liner extending on lateral surfaces of the first region and not extending on a top surface of the first region. Related fabrication methods are also described.
Abstract:
Provided are a semiconductor device and a method of fabricating the same. The method comprises forming an active fin extending along a first direction; forming a field insulating layer exposing an upper part of the active fin, along long sides of the active fin; forming a dummy gate pattern extending along a second direction intersecting the first direction, on the active fin; forming a spacer on at least one side of the dummy gate pattern; forming a liner layer covering the active fin exposed by the spacer and the dummy gate pattern; forming a dopant supply layer containing a dopant element, on the liner layer; and forming a doped region in the active fin along an upper surface of the active fin by heat-treating the dopant supply layer.