Abstract:
A semiconductor light emitting device includes a semiconductor stack including a first conductive semiconductor layer including a first surface, a second conductive semiconductor layer including a second surface opposite to the first surface, an active layer disposed between the first conductive semiconductor layer and the second conductive semiconductor layer, and a through hole disposed through the semiconductor stack. The semiconductor light emitting device further includes a contact layer connected to the first conductive semiconductor layer, disposed in the through hole, and disposed through the semiconductor stack, a first electrode layer connected to the contact layer, and a second electrode layer disposed on the second surface, and including a pad forming portion on which the semiconductor stack is not disposed. The semiconductor light emitting device further includes an insulating layer disposed between the first electrode layer and the second electrode layer, and an electrode pad disposed on the pad forming portion.
Abstract:
There is provided a semiconductor light emitting device including a first conductivity-type semiconductor base layer, a plurality of light emitting nanostructures disposed on the first conductivity-type semiconductor base layer to be spaced apart from one another, each light emitting nanostructure including a first conductivity-type semiconductor core, an active layer and a second conductivity-type semiconductor layer, and a filling layer including a refractive portion disposed between the light emitting nanostructures and a cover portion filled between the light emitting nanostructures and enclosing the refractive portion.
Abstract:
A nanostructure semiconductor light emitting device may include a base layer having first and second regions and formed of a first conductivity-type semiconductor material; a plurality of light emitting nanostructures disposed on the base layer, each of which including a nanocore formed of a first conductivity-type semiconductor material, and an active layer and a second conductivity-type semiconductor layer sequentially disposed on the nanocore; a contact electrode disposed on the light emitting nanostructures to be connected to the second conductivity-type semiconductor layer; a first electrode connected to the base layer; and a second electrode covering a portion of the contact electrode disposed on at least one of light emitting nanostructures disposed in the second region among the plurality of light emitting nanostructures, wherein light emitting nanostructures disposed in the second region and light emitting nanostructures disposed in the first region among the plurality of light emitting nanostructures have different shapes.
Abstract:
A method of manufacturing a nanostructure semiconductor light emitting device may includes preparing a mask layer by sequentially forming a first insulating layer and a second insulating layer on a base layer configured of a first conductivity-type semiconductor, forming a plurality of openings penetrating the mask layer, growing a plurality of nanorods in the plurality of openings, removing the second insulating layer, preparing a plurality of nanocores by re-growing the plurality of nanorods, and forming nanoscale light emitting structures by sequentially growing an active layer and a second conductivity-type semiconductor layer on surfaces of the plurality of nanocores. The plurality of openings may respectively include a mold region located in the second insulating layer, and the mold region includes at least one curved portion of which an inclination of a side surface varies according to proximity to the first insulating layer.