Abstract:
A method of manufacturing a three-dimensional semiconductor memory device comprises forming a thin layer structure by alternately stacking first and second material layers on a substrate, forming a penetration dent penetrating the thin layer structure and exposing a top surface of the substrate recessed by the penetration dent, forming a vertical insulation layer penetrating the thin layer structure to cover an inner wall of the penetration dent, forming a semiconductor pattern penetrating the vertical insulation layer at the penetration dent to be inserted into the substrate, and forming an oxide layer between the thin layer structure and the substrate by oxidizing a sidewall of the penetration dent.
Abstract:
Disclosed are a memory device and an operating method thereof. The memory device includes a bitline sense amplifier connected to a bitline and a complementary bitline connected to a memory cell, and a sense amplifier driver circuit. The bitline sense amplifier senses and amplifies a voltage difference by developing a voltage of the bitline and a voltage of the complementary bitline. The sense amplifier driver circuit includes a pull-up circuit adjusting a level of a bitline low-level voltage developed by the bitline sense amplifier to be higher than a ground voltage in response to a first pull-up pulse, and a pull-down circuit adjusting the level of the bitline low level adjusted by the pull-up circuit to be equal to the ground voltage in response to a pull-down pulse. A pulse generator generates the first pull-up pulse and the pull-down pulse based on a command received from a host.
Abstract:
A semiconductor process simulation method includes classifying a semiconductor process simulation into a plurality of blocks based on an annealing simulation, performing a shape simulation corresponding to a block selected from the plurality of blocks, and performing at least two ion implantation simulations among a plurality of ion implantation simulations corresponding to the selected block in parallel, based on result data of the shape simulation corresponding to the selected block.
Abstract:
Provided is a semiconductor device including a lower pattern layer including a first semiconductor material; a first conductivity-type doped pattern layer disposed on the lower pattern layer and including a semiconductor material doped with a first conductivity-type impurity; a source/drain pattern disposed on the first conductivity-type doped pattern layer and including a semiconductor material doped with a second conductivity-type impurity different from the first conductivity-type impurity; a channel pattern including semiconductor patterns connected between the source/drain patterns, stacked apart from each other, and including a second semiconductor material different from the first semiconductor material; and a gate pattern disposed on the first conductivity-type doped pattern layer and between the source/drain patterns, and surrounding the channel pattern.
Abstract:
To reduce structure noise, input data representing an input structure is obtained and boundary conditions are set by classifying data of each of multiple structure elements of the input data as a signal component or a noise component. A smoothing operation is performed with respect to the input data and based on the boundary conditions. Output data representing an output structure is provided by reducing noise from the input structure.