Abstract:
A method and apparatus are for monitoring a secondary power device and for accurately checking a state of the secondary power device, and an electronic system includes the apparatus. The method of monitoring a secondary power device includes setting a first reference parameter by using a voltage of at least one capacitor of the secondary power device, setting a second reference parameter by using the voltage of the at least one capacitor and the first reference parameter, and setting a reference level for checking of the state of the secondary power device by using the second reference parameter, wherein the reference level is used in checking of the state of the secondary power device.
Abstract:
A method and apparatus for monitoring a secondary power device, for accurately checking a state of the secondary power device, and an electronic system including the apparatus are provided. The method of monitoring a secondary power device includes: setting a first reference parameter by using a voltage of at least one capacitor of the secondary power device; setting a second reference parameter by using the voltage of the at least one capacitor and the first reference parameter; and setting a reference level for checking of the state of the secondary power device by using the second reference parameter, wherein the reference level is used in checking of the state of the secondary power device.
Abstract:
An image sensor is disclosed. The image sensor includes a substrate including an active region and a dummy region, a plurality of unit pixels on the active region, a transparent conductive layer on a first surface of the substrate, a light-blocking layer on the transparent conductive layer and electrically connected to the transparent conductive layer, the light-blocking layer having a grid structure adjacent light transmission regions, and a pad electrically connected to the light-blocking layer, on the dummy region.
Abstract:
An image sensor is disclosed. The image sensor includes a substrate including an active region and a dummy region, a plurality of unit pixels on the active region, a transparent conductive layer on a first surface of the substrate, a light-blocking layer on the transparent conductive layer and electrically connected to the transparent conductive layer, the light-blocking layer having a grid structure adjacent light transmission regions, and a pad electrically connected to the light-blocking layer, on the dummy region.
Abstract:
A reference voltage generation device includes a noise information generation circuit configured to generate power noise information based on a first power noise and a second power noise, the first power noise and the second power noise generated based on a first power and a second power supplied to a first electronic device and propagated from the first electronic device to a second electronic device through a communication line, and the first electronic device and the second electronic device configured to perform data communication using a multi-level signaling scheme. The device includes a reference voltage generation circuit configured to generate three or more reference voltages for the multi-level signaling scheme based on the power noise information, and the second electronic device is configured to use the three or more reference voltages.
Abstract:
An image sensor with improved performance, and a method of fabricating the same are provided. The image sensor includes a sensor array region and a pad region, which is disposed outside the sensor array region, the image sensor comprising a first substrate including a first surface, upon which light is incident, and a second surface, which is opposite to the first surface, a first isolation film in the first substrate at the sensor array region, the first isolation film defining a plurality of unit pixels, a second substrate including a third surface, which faces the second surface of the first substrate, and a fourth surface, which is opposite to the third surface, a wiring structure between the second and third surfaces, the wiring structure including an interlayer insulating film and a wiring in the interlayer insulating film, a pad trench in the pad region, the pad trench exposing the wiring through the first substrate, a bonding terminal in the pad trench, the bonding terminal being connected to the wiring, and a second isolation film in the first substrate at the pad region, the second isolation film being adjacent to the pad trench, wherein widths of each of the first and second isolation films decrease in a direction from the second surface to the first surface.
Abstract:
An image sensor includes a substrate including a pixel region and a pad region and having a first surface and a second surface opposite to the first surface, the pad region of the substrate being provided with a first recess which is recessed to a first depth from the second surface toward the first surface and the pixel region of the substrate being provided with a plurality of unit pixels, an interlayer insulating layer disposed on the first surface, an interconnection line disposed in the interlayer insulating layer, a conductive pad disposed in the first recess of the pad region, and a plurality of penetration structures disposed in the pad region of the substrate and extending from a bottom surface of the first recess to the first surface of the substrate, and electrically connecting the conductive pad to the interconnection line.
Abstract:
An image sensor includes a substrate including a pixel region and a pad region and having a first surface and a second surface opposite to the first surface, the pad region of the substrate being provided with a first recess which is recessed to a first depth from the second surface toward the first surface and the pixel region of the substrate being provided with a plurality of unit pixels, an interlayer insulating layer disposed on the first surface, an interconnection line disposed in the interlayer insulating layer, a conductive pad disposed in the first recess of the pad region, and a plurality of penetration structures disposed in the pad region of the substrate and extending from a bottom surface of the first recess to the first surface of the substrate, and electrically connecting the conductive pad to the interconnection line.
Abstract:
Memory devices include a plurality of elongate gate stacks extending in parallel on a substrate and at least one insulation region disposed in a trench between adjacent ones of the gate stacks. The at least one insulation region has linear first portions having a first width and widened second portions having a second width greater than the first width. A common source region is disposed in the substrate underlying the at least one insulation region. The devices further include respective conductive plugs passing through respective ones of the widened second portions of the at least one insulation region and electrically connected to the common source region and at least one strapping line disposed on the conductive plugs between the adjacent ones of the gate stacks and in direct contact with the conductive plugs.
Abstract:
An image sensor is disclosed. The image sensor includes a substrate including an active region and a dummy region, a plurality of unit pixels on the active region, a transparent conductive layer on a first surface of the substrate, a light-blocking layer on the transparent conductive layer and electrically connected to the transparent conductive layer, the light-blocking layer having a grid structure adjacent light transmission regions, and a pad electrically connected to the light-blocking layer, on the dummy region.