摘要:
There is provided a method of manufacturing a semiconductor device including: preparing a semiconductor substrate having an active region; forming a dielectric layer for gate insulation on the active region; forming a curing layer with a material containing germanium (Ge) on the dielectric layer; heat-treating the curing layer; and removing the curing layer. The germanium-containing material may be silicon germanium (SiGe) or germanium (Ge).
摘要:
A device for manufacturing a semiconductor device is provided. The device for manufacturing a semiconductor device includes a tube extending in a first direction, and defining a reaction space therein and configured to accommodate a boat that is configured to receive a plurality of substrates therein, and first and second nozzles each extending in the first direction inside the tube, and being apart from each other on a plane that is perpendicular to the first direction and parallel to upper surfaces of the substrates, wherein the first and second nozzles include a plurality of first injection ports and a plurality of first second injection ports that are configured inject different gases toward a center of the reaction space, respectively, and a plurality of second injection ports are placed in a region between a corresponding pair of adjacent ones of the plurality of first injection ports along the first direction.
摘要:
There is provided a method of manufacturing a semiconductor device including: preparing a semiconductor substrate having an active region; forming a dielectric layer for gate insulation on the active region; forming a curing layer with a material containing germanium (Ge) on the dielectric layer; heat-treating the curing layer; and removing the curing layer. The germanium-containing material may be silicon germanium (SiGe) or germanium (Ge).
摘要:
A storage device includes a nonvolatile memory device including a plurality of nonvolatile memories; a controller configured to allocate write blocks of the nonvolatile memory device to a plurality of streams provided from an outside; and a buffer memory configured to store a result of allocation of the write blocks to the plurality of streams, wherein the controller is further configured to reallocate the write blocks of the nonvolatile memory device to the plurality of streams based on the result of allocation stored in the buffer memory.
摘要:
A storage device includes a nonvolatile memory device including a plurality of nonvolatile memories; a controller configured to allocate write blocks of the nonvolatile memory device to a plurality of streams provided from an outside; and a buffer memory configured to store a result of allocation of the write blocks to the plurality of streams, wherein the controller is further configured to reallocate the write blocks of the nonvolatile memory device to the plurality of streams based on the result of allocation stored in the buffer memory.
摘要:
A capacitor structure, a semiconductor memory device including the same, a method for fabricating the same, and a method for fabricating a semiconductor device including the same are provided. The capacitor structure includes a lower electrode, an upper electrode, and a capacitor dielectric film which is interposed between the lower electrode and the upper electrode, wherein the lower electrode includes an electrode film including a first metal element, and a doping oxide film including an oxide of the first metal element between the electrode film and the capacitor dielectric film, and the doping oxide film further includes a second metal element including at least one of Group 5 to Group 11 and Group 15 metal elements, and an impurity element including at least one of silicon (Si), aluminum (Al), zirconium (Zr) and hafnium (Hf).
摘要:
An amplitude shift keying (ASK) demodulator and a communication apparatus including the same are provided. The ASK demodulator includes an envelope detector, a clock generator, a plurality of elementary demodulators, and a post signal processor. The envelope detector is configured to detect an envelope of an ASK modulated signal and to generate an envelope signal. The clock generator is configured to generate a main clock signal and first through n-th clock signals, where n is a positive integer of at least 2. The plurality of elementary demodulators are each configured to sample the envelope signal using a first sampling clock signal and a second sampling clock signal, and to output first through n-th elementary demodulated signals based on a difference between the sampled envelope signals using the first sampling clock signal and the second sampling clock signal. The post signal processor is configured to generate a final demodulated signal using at least one of the first through n-th elementary demodulated signals.