Abstract:
A device for generating restoration data by descrambling scramble data includes a linear feedback shift register configured to receive a first clock including a plurality of edges and sequentially generate a plurality of seeds including first to N−1th seeds (where N is a natural number of 2 or greater) respectively corresponding to first to N−1th edges among the plurality of edges, a seed calculator configured to calculate an Nth seed corresponding to an Nth edge among the plurality of edges by using the first seed, and a descrambler configured to descramble the scramble data by using the plurality of seeds generated by the linear feedback shift register and the Nth seed calculated by the seed calculator. The linear feedback shift register is further configured to generate an N+1th seed by using the Nth seed.
Abstract:
An arc lamp includes an arc tube configured to receive a reaction gas therein, and an anode and a cathode disposed opposite one another within the arc tube and configured to generate an electrical arc. The anode includes an anode head portion extending inwardly from an end portion of the arc tube, and an anode tip portion bonded to the anode head portion and comprising a trench extending in a top surface along a peripheral region of the anode tip portion.
Abstract:
In a method of forming an epitaxial layer, an etching gas may be decomposed to form decomposed etching gases. A source gas may be decomposed to form decomposed source gases. The decomposed source gases may be applied to a substrate to form the epitaxial layer on the substrate. A portion of the epitaxial layer on a specific region of the substrate may be etched using the decomposed etching gases. Before the etching gas is introduced into the reaction chamber, the etching gas may be previously decomposed. The decomposed etching gases may then be introduced into the reaction chamber to etch the epitaxial layer on the substrate. As a result, the epitaxial layer on the substrate may have a uniform distribution.
Abstract:
In a method of forming an epitaxial layer, an etching gas may be decomposed to form decomposed etching gases. A source gas may be decomposed to form decomposed source gases. The decomposed source gases may be applied to a substrate to form the epitaxial layer on the substrate. A portion of the epitaxial layer on a specific region of the substrate may be etched using the decomposed etching gases. Before the etching gas is introduced into the reaction chamber, the etching gas may be previously decomposed. The decomposed etching gases may then be introduced into the reaction chamber to etch the epitaxial layer on the substrate. As a result, the epitaxial layer on the substrate may have a uniform distribution.