Abstract:
A variable resistance memory device including a substrate; horizontal structures spaced apart from each other in a first direction perpendicular to a top surface of the substrate; variable resistance patterns on the horizontal structures, respectively; and conductive lines on the variable resistance patterns, respectively, wherein each of the horizontal structures includes a first electrode pattern, a semiconductor pattern, and a second electrode pattern arranged along a second direction parallel to the top surface of the substrate, and each of the variable resistance patterns is between one of the second electrode patterns and a corresponding one of the conductive lines.
Abstract:
The methods of manufacturing an MRAM device and MRAM devices are provided. The methods may include forming a first electrode on an upper surface of a substrate, forming a first magnetic layer on the first electrode, forming a tunnel barrier structure on the first magnetic layer, forming a second magnetic layer on the tunnel barrier structure, and forming a second electrode on the second magnetic layer. The tunnel barrier structure may include a first tunnel barrier layer and a second tunnel barrier layer that are sequentially stacked on the first magnetic layer and may have different resistivity distributions from each other along a horizontal direction that may be parallel to the upper surface of the substrate.
Abstract:
In a method of forming an epitaxial layer, an etching gas may be decomposed to form decomposed etching gases. A source gas may be decomposed to form decomposed source gases. The decomposed source gases may be applied to a substrate to form the epitaxial layer on the substrate. A portion of the epitaxial layer on a specific region of the substrate may be etched using the decomposed etching gases. Before the etching gas is introduced into the reaction chamber, the etching gas may be previously decomposed. The decomposed etching gases may then be introduced into the reaction chamber to etch the epitaxial layer on the substrate. As a result, the epitaxial layer on the substrate may have a uniform distribution.
Abstract:
A substrate processing apparatus including a chamber accommodating a substrate; a substrate support in the chamber, the substrate support supporting the substrate; a gas injector to inject an oxidizing gas for oxidizing a metal layer to be disposed on the substrate; a cooler under the substrate to cool the substrate; a target mount disposed on the substrate, the target mount including a target for performing a sputtering process; and a blocker between the target and the gas injector, the blocker shielding the target from the oxidizing gas injected from the gas injector.
Abstract:
The methods of manufacturing an MRAM device and MRAM devices are provided. The methods may include forming a first electrode on an upper surface of a substrate, forming a first magnetic layer on the first electrode, forming a tunnel barrier structure on the first magnetic layer, forming a second magnetic layer on the tunnel barrier structure, and forming a second electrode on the second magnetic layer. The tunnel barrier structure may include a first tunnel barrier layer and a second tunnel barrier layer that are sequentially stacked on the first magnetic layer and may have different resistivity distributions from each other along a horizontal direction that may be parallel to the upper surface of the substrate.
Abstract:
A magnetic memory device includes a substrate, a circuit device on the substrate, a lower electrode electrically connected to the circuit device, a magnetic tunnel junction structure (MTJ structure) on the lower electrode, and an upper electrode on the MTJ structure. The MTJ structure includes a pinned layer structure including at least one crystalline ferromagnetic layer and at least one amorphous ferromagnetic layer, a free layer, and a tunnel barrier layer between the pinned layer structure and the free layer.
Abstract:
In a method of forming an epitaxial layer, an etching gas may be decomposed to form decomposed etching gases. A source gas may be decomposed to form decomposed source gases. The decomposed source gases may be applied to a substrate to form the epitaxial layer on the substrate. A portion of the epitaxial layer on a specific region of the substrate may be etched using the decomposed etching gases. Before the etching gas is introduced into the reaction chamber, the etching gas may be previously decomposed. The decomposed etching gases may then be introduced into the reaction chamber to etch the epitaxial layer on the substrate. As a result, the epitaxial layer on the substrate may have a uniform distribution.
Abstract:
A privacy protection policy is present in a content sharing system. A method for managing contents in a content sharing system includes receiving a content download request from a first account through a first device; and determining whether to carry out the download by considering at least one of a sharing range of a download-requested content, a content access right of the first account, a content access right of an owner account of the first device, a sharing range of a download folder, and sharing acceptance or rejection of an owner of the content.
Abstract:
A method for determining a source and a transmission path to provide content includes receiving a message comprising at least one of channel information of a link between a request device which requests content download and a central management device, available resource amount information of a candidate device, channel information of a link between the candidate device and the central management device, and channel information of a link between the request device and one candidate device. The method also includes determining a source device and the transmission path for providing the content to the request device using an available resource amount of the candidate device, a data rate of the link between the request device and the central management device, a data rate of the link between the request device and the candidate device, and a data rate of the link between the candidate device and the central management device.
Abstract:
A cloud service system includes at least one user device, a plurality of clouds for providing different cloud services, and a gateway connected between the user device and the clouds. The gateway selects at least one of the clouds according to predefined Service Level Agreement (SLA) information, and stores content provided from the user device to the selected cloud.