Abstract:
A semiconductor package includes a first package substrate, a first semiconductor chip on the first package substrate, a plurality of first chip bumps between the first package substrate and the first semiconductor chip, a plurality of second semiconductor chips sequentially stacked on the first semiconductor chip, a molding member which covers the plurality of second semiconductor chips, on the first semiconductor chip, and a thermoelectric cooling layer attached onto a surface of the first semiconductor chip. The thermoelectric cooling layer includes a cooling material layer extending along the surface of the first semiconductor chip, a first electrode pattern which surrounds the plurality of first chip bumps from a planar viewpoint, in the cooling material layer, and a second electrode pattern which surrounds the first electrode pattern from the planar viewpoint, in the cooling material layer.
Abstract:
A method of decoding image data includes operating a decoder including a decoding buffer and a decoding module, wherein the decoding module includes a plurality of decoding channels, setting a non-shared memory region and a shared memory region in the decoding buffer, restoring a plurality of frames by decoding a bitstream using the plurality of decoding channels, determining a type of each of the frames, and writing each frame to one of the non-shared memory region or the shared memory region based on the type of each frame.
Abstract:
A semiconductor package may include; a first substrate, a first semiconductor chip disposed on the first substrate, an interposer disposed on the first semiconductor chip, a connecter spaced apart from the first semiconductor chip in a first horizontal direction and extending between the first substrate and the interposer, wherein the connecter directly electrically connects the first substrate and the interposer, a capacitor disposed between the connecter and the first semiconductor chip, and a guide pattern including a first guide portion and an opposing second guide portion spaced apart in the first horizontal direction, wherein the first guide portion is disposed between the connecter and the capacitor, the second guide portion is disposed between the capacitor and the first semiconductor chip, and at least part of the capacitor is inserted between the first guide portion and the second guide portion.
Abstract:
A device for attaching conductive balls to a substrate includes a first plate, a second plate and a controller. The first plate includes first recesses. Each of the first recesses picks up a corresponding conductive ball to be attached to the semiconductor package. The second plate includes second recesses. Each of the second recesses picks up a corresponding conductive ball to be attached to the semiconductor package. The first plate and the second plate are separated from each other. The controller controls each of the first plate and the second plate to be separately moved up or down so that a lower surface of the first plate and a lower surface of the second plate are positioned differently in a first direction normal the lower surface of the first plate.
Abstract:
An apparatus and method for stabilizing an output of a laser is provided. An optical amplifier oscillates light having a first wavelength band. A filter filters the light having the first wavelength band to output light having a second wavelength band narrower than the first wavelength band. The light having the second wavelength band may correspond to an output of a laser. To stabilize the wavelength center of the output laser, at least a portion of the light having the second wavelength band may be transferred to a fiber Bragg Grating (FBG) through a coupler. By performing feedback of a difference between the signal output from the FBG and a laser modulation signal, an offset corresponding to a lead zirconate titanate (PZT) operating parameter of a Fabry-Perot filter may be controlled to automatically stabilize the wavelength center.