Abstract:
An application processor and a system on chip (SoC) that incorporates the application processor are provided. The application processor includes a first core configured to process first data per unit time, a second core configured to process second data larger than the first data per unit time, and a lookup table configured to determine whether to activate the first core or the second core based on at least one of an analysis result of a message signal received by a communications processor, a sensing signal supplied to the application processor and a power level supplied to the communications processor.
Abstract:
A semiconductor device includes a scan input circuit, a master latch, a slave latch, a first inverter, and a scan output circuit. The scan input circuit is configured to receive a scan input signal, a first data signal, and a scan enable signal and select any one of the first data signal and the scan input signal in response to the scan enable signal to output a first select signal. The master latch is configured to latch the first select signal and output a first output signal. The slave latch is configured to latch the first output signal and output a second output signal. The first inverter is configured to invert the second output signal. The scan output circuit is configured to receive a signal output from the slave latch and an external signal and output a first scan output signal.
Abstract:
A semiconductor device and a semiconductor system are provided. A semiconductor device includes a monitoring circuit receiving a first operating voltage and a second operating voltage, which is different from the first operating voltage, from a Power Management Integrated Circuit (PMIC) and monitoring a duration of use of a System-on-Chip (SoC) at each of the first and second operating voltages; a processing circuit calculating a normalized value based on predetermined weight information from the duration of use of the SoC at each of the first and second operating voltages; and a voltage circuit determining whether to increase an operating voltage of the SoC by comparing the normalized value with a predetermined value.
Abstract:
A semiconductor device and a semiconductor system are provided. A semiconductor device includes a monitoring circuit receiving a first operating voltage and a second operating voltage, which is different from the first operating voltage, from a Power Management Integrated Circuit (PMIC) and monitoring a duration of use of a System-on-Chip (SoC) at each of the first and second operating voltages; a processing circuit calculating a normalized value based on predetermined weight information from the duration of use of the SoC at each of the first and second operating voltages; and a voltage circuit determining whether to increase an operating voltage of the SoC by comparing the normalized value with a predetermined value.
Abstract:
A semiconductor device includes a scan input circuit, a master latch, a slave latch, a first inverter, and a scan output circuit. The scan input circuit is configured to receive a scan input signal, a first data signal, and a scan enable signal and select any one of the first data signal and the scan input signal in response to the scan enable signal to output a first select signal. The master latch is configured to latch the first select signal and output a first output signal. The slave latch is configured to latch the first output signal and output a second output signal. The first inverter is configured to invert the second output signal. The scan output circuit is configured to receive a signal output from the slave latch and an external signal and output a first scan output signal.
Abstract:
A low-power synchronizer circuit, a data processing circuit that incorporates the synchronizer circuit, and a synchronization method are provided. The synchronizer circuit includes a delay circuit for receiving and delaying an asynchronous input signal, a first flip-flop having an input terminal connected to an output terminal of the delay circuit, a clock terminal for receiving the asynchronous input signal, and a reset terminal for receiving the asynchronous input signal, a synchronizer connected to an output terminal of the first flip-flop, and a clock-gating circuit for receiving a clock signal and determining whether to supply the clock signal to the synchronizer in response to one of a first output value of the delay circuit and a second output value of the first flip-flop and a third output value of the synchronizer.
Abstract:
A contactless user-interface (UI) motion recognizing device and method of controlling the same are provided. The method includes: obtaining a left-eye image and a right-eye image; determining an object position of an object in the obtained left-eye image and the obtained right-eye image; determining an object brightness of the object; determining depth information of the object using the determined object brightness; determining a three-dimensional (3D) object position of the object using the determined object position and the determined depth information; determining an object moving velocity based on the determined 3D object position and a previous 3D object position; and determining a UI pattern based on the determined 3D object position and the determined object moving velocity, and executing an operation according to the determined UI pattern.
Abstract:
An application processor and a system on chip (SoC) that incorporates the application processor are provided. The application processor includes a first core configured to process first data per unit time, a second core configured to process second data larger than the first data per unit time, and a lookup table configured to determine whether to activate the first core or the second core based on at least one of an analysis result of a message signal received by a communications processor, a sensing signal supplied to the application processor and a power level supplied to the communications processor.
Abstract:
An application processor and a system on chip (SoC) that incorporates the application processor are provided. The application processor includes a first core configured to process first data per unit time, a second core configured to process second data larger than the first data per unit time, and a lookup table configured to determine whether to activate the first core or the second core based on at least one of an analysis result of a message signal received by a communications processor, a sensing signal supplied to the application processor and a power level supplied to the communications processor.
Abstract:
A semiconductor device package and a semiconductor apparatus are provided. The semiconductor device includes a first semiconductor package, a second semiconductor package, and an interposer between the first and second semiconductor packages. The first semiconductor package includes a first semiconductor package substrate and a first semiconductor chip. The second semiconductor package includes a second semiconductor package substrate and a second semiconductor chip. The interposer electrically connects the first semiconductor package to the second semiconductor package and includes a first interposer hole passing through the interposer. The first semiconductor chip includes a second portion which protrudes from a first portion, and the second portion is inserted into the first interposer hole.