Abstract:
Embodiments of the inventive concept include a non-volatile memory module array system. The system can include non-volatile memory modules each including a first port, a second port, solid state drives, a switch, and a port configuration logic section. The system can include a bus connected to the first or second ports. The system can include a host to communicate with the non-volatile memory modules via the bus. The port configuration logic section can toggle between a first port configuration associated with the second port and a second port configuration associated with the second port. The port configuration logic section can include a first non-volatile configuration section to store the first and second port configurations associated with the second port. The first port configuration can cause the second port to operate as a downstream port. The second port configuration can cause the second port to operate as an upstream port.
Abstract:
An assembly for a solid-state drive (SSD) includes a base printed circuit board having a PCIe adapter form factor, and at least one U.2 connector that is capable of being connected to a NGSFF device. The NGSFF device includes an NGSFF PCB, a first PCIe connector and a second PCIe connector. The NGSFF PCB is capable of receiving at least one SSD device and includes a first end and a second end in which the first end is opposite the second end. The first PCIe connector is at an edge of the first end of the NGSFF PCB and is capable of physical insertion into the at least one U.2 connector on the base PCB, and the second PCIe connector is at an edge of the second end of the NGSFF PCB and is capable of receiving a first PCIe connector of another NGSFF PCB.
Abstract:
Embodiments of the inventive concept include solid state drive (SSD) multi-card adapters that can include multiple solid state drive cards, which can be incorporated into existing enterprise servers without major architectural changes, thereby enabling the server industry ecosystem to easily integrate evolving solid state drive technologies into servers. The SSD multi-card adapters can include an interface section between various solid state drive cards and drive connector types. The interface section can perform protocol translation, packet switching and routing, data encryption, data compression, management information aggregation, virtualization, and other functions.
Abstract:
Embodiments of the inventive concept include solid state drive (SSD) multi-card adapters that can include multiple solid state drive cards, which can be incorporated into existing enterprise servers without major architectural changes, thereby enabling the server industry ecosystem to easily integrate evolving solid state drive technologies into servers. The SSD multi-card adapters can include an interface section between various solid state drive cards and drive connector types. The interface section can perform protocol translation, packet switching and routing, data encryption, data compression, management information aggregation, virtualization, and other functions.
Abstract:
Embodiments of the inventive concept include solid state drive (SSD) multi-card adapters that can include multiple solid state drive cards, which can be incorporated into existing enterprise servers without major architectural changes, thereby enabling the server industry ecosystem to easily integrate evolving solid state drive technologies into servers. The SSD multi-card adapters can include an interface section between various solid state drive cards and drive connector types. The interface section can perform protocol translation, packet switching and routing, data encryption, data compression, management information aggregation, virtualization, and other functions.
Abstract:
An assembly for a solid-state drive (SSD) includes a base printed circuit board having a PCIe adapter form factor, and at least one U.2 connector that is capable of being connected to a NGSFF device. The NGSFF device includes an NGSFF PCB, a first PCIe connector and a second PCIe connector. The NGSFF PCB is capable of receiving at least one SSD device and includes a first end and a second end in which the first end is opposite the second end. The first PCIe connector is at an edge of the first end of the NGSFF PCB and is capable of physical insertion into the at least one U.2 connector on the base PCB, and the second PCIe connector is at an edge of the second end of the NGSFF PCB and is capable of receiving a first PCIe connector of another NGSFF PCB.
Abstract:
Embodiments of the inventive concept include 2.5 inch hard disk drive form factor solid state drive multi-card adapters that can include multiple M.2 solid state drive cards, which can be incorporated into existing enterprise servers without major architectural changes, thereby enabling the server industry ecosystem to easily integrate M.2 solid state drive technology into servers. Multiple M.2 solid state drive cards and a peripheral component interconnect express (PCIe) switch can be included within a 2.5 inch hard disk drive form factor solid state drive multi-card adapter. The solid state drive multi-card adapters can be attached to or seated within drive bays of a computer server that supports non-volatile memory express (NVMe) 2.5 inch drives without any changes to the server architecture, thereby providing a straight-forward upgrade path.
Abstract:
Embodiments of the inventive concept include a plurality of memory ranks, a buffer chip including a rank remap control section configured to remap a rank from among the plurality of memory ranks of the volatile memory module responsive to a failure of the rank, and a dynamic serial presence detect section configured to dynamically update a stated total capacity of the volatile memory module based at least on the remapped rank. In some embodiments, a memory module includes a plurality of memory ranks, an extra rank in addition to the plurality of memory ranks, the extra rank being a spare rank configured to store a new page corresponding to a failed page from among the plurality of ranks, and a buffer chip including a page remap control section configured to remap the failed page from among the plurality of ranks to the new page in the extra rank.
Abstract:
Embodiments of the present inventive concept relate to systems and methods for dynamically allocating and/or redistributing thermal budget to each processor from a total processor thermal budget based on the workload of each processor. In this manner, the processor(s) having a higher workload can receive a higher thermal budget. The allocation can be dynamically adjusted over time. The individual and overall processor performance increases while efficiently allocating the total thermal budget. By dynamically sharing the total thermal budget of the system, the performance of the system as a whole is increased, thereby lowering, for example, the total cost of ownership (TCO) of datacenters.
Abstract:
Embodiments of the inventive concept include solid state drive (SSD) multi-card adapters that can include multiple solid state drive cards, which can be incorporated into existing enterprise servers without major architectural changes, thereby enabling the server industry ecosystem to easily integrate evolving solid state drive technologies into servers. The SSD multi-card adapters can include an interface section between various solid state drive cards and drive connector types. The interface section can perform protocol translation, packet switching and routing, data encryption, data compression, management information aggregation, virtualization, and other functions.