摘要:
Provided is a method of forming an aluminum oxide layer and a method of manufacturing a charge trap memory device using the same. The method of forming an aluminum oxide layer may include forming an amorphous aluminum oxide layer on an underlying layer, forming a crystalline auxiliary layer on the amorphous aluminum oxide layer, and crystallizing the amorphous aluminum oxide layer. Forming the crystalline auxiliary layer may include forming an amorphous auxiliary layer on the amorphous aluminum oxide layer; and crystallizing the amorphous auxiliary layer.
摘要:
Provided is a method of forming an aluminum oxide layer and a method of manufacturing a charge trap memory device using the same. The method of forming an aluminum oxide layer may include forming an amorphous aluminum oxide layer on an underlying layer, forming a crystalline auxiliary layer on the amorphous aluminum oxide layer, and crystallizing the amorphous aluminum oxide layer. Forming the crystalline auxiliary layer may include forming an amorphous auxiliary layer on the amorphous aluminum oxide layer; and crystallizing the amorphous auxiliary layer.
摘要:
Non-volatile memory devices and methods of programming a non-volatile memory device in which electrons are moved between charge trap layers through a pad oxide layer are provided. The non-volatile memory devices include a charge trap layer on a semiconductor substrate and storing electrons, a pad oxide layer on the first charge trap layer, and a second trap layer on the pad oxide layer and storing electrons. In a programming mode in which data is written, the stored electrons are moved between a first position of the first charge trap layer and a first position of the second charge trap layer through the pad oxide layer or between a second position of the first charge trap layer and a second position of the second charge trap layer through the pad oxide layer.
摘要:
Non-volatile memory devices and methods of programming a non-volatile memory device in which electrons are moved between charge trap layers through a pad oxide layer are provided. The non-volatile memory devices include a charge trap layer on a semiconductor substrate and storing electrons, a pad oxide layer on the first charge trap layer, and a second trap layer on the pad oxide layer and storing electrons. In a programming mode in which data is written, the stored electrons are moved between a first position of the first charge trap layer and a first position of the second charge trap layer through the pad oxide layer or between a second position of the first charge trap layer and a second position of the second charge trap layer through the pad oxide layer.
摘要:
Crystalline aluminum oxide layers having increased energy band gap, charge trap memory devices including crystalline aluminum oxide layers and methods of manufacturing the same are provided. A method of forming an aluminum oxide layer having an increased energy band gap includes forming an amorphous aluminum oxide layer on a lower film, introducing hydrogen (H) or hydroxyl group (OH) into the amorphous aluminum oxide layer, and crystallizing the amorphous aluminum oxide layer including the H or OH.
摘要:
Crystalline aluminum oxide layers having increased energy band gap, charge trap memory devices including crystalline aluminum oxide layers and methods of manufacturing the same are provided. A method of forming an aluminum oxide layer having an increased energy band gap includes forming an amorphous aluminum oxide layer on a lower film, introducing hydrogen (H) or hydroxyl group (OH) into the amorphous aluminum oxide layer, and crystallizing the amorphous aluminum oxide layer including the H or OH.
摘要:
Provided are a gate stack, a capacitorless dynamic random access memory (DRAM) including the gate stack and methods of manufacturing and operating the same. The gate stack for a capacitorless DRAM may include a tunnel insulating layer on a substrate, a first charge trapping layer on the tunnel insulating layer, an interlayer insulating layer on the first charge trapping layer, a second charge trapping layer on the interlayer insulating layer, a blocking insulating layer on the second charge trapping layer, and a gate electrode on the blocking insulating layer. The capacitorless DRAM may include the gate stack on the substrate, and a source and a drain in the substrate on both sides of the gate stack.
摘要:
A phase change memory device including a phase change layer includes a storage node and a switching device. The switching device is connected to the storage node. The storage node includes a phase change layer selectively grown on a lower electrode. In a method of manufacturing a phase change memory device, an insulating interlayer is formed on a semiconductor substrate to cover a switching device. A lower electrode connected to the switching device is formed, and a phase change layer is selectively grown on the lower electrode.
摘要:
A method of forming a phase change layer using a Ge compound and a method of manufacturing a phase change memory device using the same are provided. The method of manufacturing a phase change memory device included supplying a first precursor on a lower layer on which the phase change layer is to be formed, wherein the first precursor is a bivalent precursor including germanium (Ge) and having a cyclic structure. The first precursor may be a cyclic germylenes Ge-based compound or a macrocyclic germylenes Ge-based, having a Ge—N bond. The phase change layer may be formed using a MOCVD method, cyclic-CVD method or an ALD method. The composition of the phase change layer may be controlled by a deposition pressure in a range of 0.001 torr-10 torr, a deposition temperature in a range of 150° C. to 350° C. and/or a flow rate of a reaction gas in the range of 0-1 slm.
摘要:
A phase change memory device and a method of manufacturing the phase change memory device are provided. The phase change memory device may include a switching element and a storage node connected to the switching element, wherein the storage node includes a bottom electrode and a top electrode, a phase change layer interposed between the bottom electrode and the top electrode, and a titanium-tellurium (Ti—Te)-based diffusion barrier layer interposed between the top electrode and the phase change layer. The Ti—Te based diffusion barrier layer may be a TixTe1-x layer wherein x may be greater than 0 and less than 0.5.