Abstract:
A semiconductor integrated circuit includes first to N-th comparators to compare an input voltage with a threshold value; and a control circuit to perform first and second operations, set a threshold value of the first comparator as a first threshold value, and set a threshold value of an M-th comparator as a second threshold value, wherein the first operation includes an operation where a value obtained by multiplying a value obtained by subtracting the threshold value of the M-th comparator from a threshold value of an (M+1)th comparator by a real number is added to the threshold value of the M-th comparator, and wherein the second operation includes an operation where a value obtained by multiplying a value obtained by subtracting the threshold value of the M-th comparator from a threshold value of an (M−1)th comparator by a real number is added to the threshold value of the M-th comparator.
Abstract:
A semiconductor device includes a first switching device including a first electrode coupled with a first node, a second electrode coupled with a second node, and a first control electrode controlling connection between the first and second electrodes; a second switching device including a third electrode coupled with the second node, a fourth electrode coupled with the second node, and a second control electrode controlling the connection between the third electrode and the fourth electrode; and a first control circuit controlling a substrate voltage of the second switching device.
Abstract:
A semiconductor device is described which includes a first comparator judging the level of an input signal based on a first judgment value, a second comparator judging the level of the input signal based on a second judgment value, and a calibrator outputting a control signal for starting the calibration of the second judgment value in the case that the calibration of the first judgment value is ended.
Abstract:
An analog signal processing device including a voltage selector selecting a given comparison reference voltage from plural comparison reference voltages, an arithmetic unit arithmetically processing the given comparison reference voltage and an analog input signal, a comparator which has at least one or more judgment points for the plural comparison reference voltages and to which an output of the arithmetic unit is inputted, and a coupling controller controlling connections between the arithmetic unit and the comparator, wherein the arithmetic unit comprises correctable first signal processors, and the number of the first signal processors is more than is necessary for the plural comparison reference voltages by M or larger, and when a set of N of first signal processors are in a correction operation, the coupling controller connects first signal processors which are not in the correction operation in the arithmetic unit to the comparator.