摘要:
An unprocessed substrate is conveyed to a film-processing chamber at the same time a processed substrate is conveyed to a substrate preparation chamber, reducing the substrate processing cycle, thereby increasing the yield per unit time. The substrate preparation chamber has a two-tiered structure for receiving processed substrates and unprocessed substrates. A two-tiered transfer robot allows the substrates to be removed or placed into the preparation and process chambers at the same time, thus decreasing the cycle time for processing a substrate.
摘要:
To effectively prevent a micro arc causing damage to an apparatus and a substrate, by detecting a generation of the micro arc. A substrate processing apparatus is constituted so as to generate a plasma P, by applying a high frequency power to an electrode 210 provided in a processing chamber 200 from a high frequency power supply part 100 through a matching unit 300. A directional coupler 121 is provided between a high frequency power source 111 and the matching unit 300, so that a reflected wave reflected from the electrode 210 and a traveling wave advancing toward the electrode 210 are coupled to a detector 122. The detector 122 outputs a detection signal, when a level of a reflected wave Pr and a differential level thereof exceed each set value. In order to place an initial period of discharge out of a detection period, a delay traveling wave, which is a delayed traveling wave, is also outputted. A controller 130 determines the generation of a harmful micro arc, when coincidence of three detection signals outputted from the detector 122 is obtained, supplies an RF cut signal to a CPU 116, and temporarily stops or temporarily decreases a high frequency power from the high frequency power source 111.
摘要:
To effectively prevent a micro arc causing damage to an apparatus and a substrate, by detecting a generation of the micro arc. A substrate processing apparatus is constituted so as to generate a plasma P, by applying a high frequency power to an electrode 210 provided in a processing chamber 200 from a high frequency power supply part 100 through a matching unit 300. A directional coupler 121 is provided between a high frequency power source 111 and the matching unit 300, so that a reflected wave reflected from the electrode 210 and a traveling wave advancing toward the electrode 210 are coupled to a detector 122. The detector 122 outputs a detection signal, when a level of a reflected wave Pr and a differential level thereof exceed each set value. In order to place an initial period of discharge out of a detection period, a delay traveling wave, which is a delayed traveling wave, is also outputted. A controller 130 determines the generation of a harmful micro arc, when coincidence of three detection signals outputted from the detector 122 is obtained, supplies an RF cut signal to a CPU 116, and temporarily stops or temporarily decreases a high frequency power from the high frequency power source 111.
摘要:
To effectively prevent a micro arc causing damage to an apparatus and a substrate, by detecting a generation of the micro arc. A substrate processing apparatus is constituted so as to generate a plasma P, by applying a high frequency power to an electrode 210 provided in a processing chamber 200 from a high frequency power supply part 100 through a matching unit 300. A directional coupler 121 is provided between a high frequency power source 111 and the matching unit 300, so that a reflected wave reflected from the electrode 210 and a traveling wave advancing toward the electrode 210 are coupled to a detector 122. The detector 122 outputs a detection signal, when a level of a reflected wave Pr and a differential level thereof exceed each set value. In order to place an initial period of discharge out of a detection period, a delay traveling wave, which is a delayed traveling wave, is also outputted. A controller 130 determines the generation of a harmful micro arc, when coincidence of three detection signals outputted from the detector 122 is obtained, supplies an RF cut signal to a CPU 116, and temporarily stops or temporarily decreases a high frequency power from the high frequency power source 111.
摘要:
In a control apparatus for controlling the firing timing of each of thyristor valves constituting a thryistor bridge by use of at least two series of control systems, a bypass-pair control circuit for thyristor bridge includes a circuit for detecting the conduction states of the thyristor valves, and a circuit for determining a conductive valve at the time of bypass-pair operation in accordance with a result of detection of the conduction state of each thyristor valve.
摘要:
A gate signal generator comprises U- and X-phase set circuits for discriminating, after the conduction period of every cycle, whether OFF time intervals of U- and X-phase thyristors are greater or smaller than a predetermined value, a reset circuit for detecting that both the U- and X-phase circuits do not provide outputs, a flip-flop set in response to an output from the U- or X-phase set circuit and reset in response to an output from the reset circuit, AND gates for calculating AND products of an output from the flip-flop and U- and X-phase forward voltage signals and for outputting the signals at a start of the forward voltage application after setting the flip-flop, and OR gates for calculating OR sums of outputs from the AND gates and outputs from the normal gate circuits. Gate signals are applied to the thyristors in response to the outputs from the OR gates.
摘要:
A voltage-type self-commutated conversion system including a voltage-type self-commutated power converter with a plurality of anti-parallel circuits of a self-turn-off device and a diode. DC terminals of the power converter are connected to DC bus lines of the voltage-type self-commutated conversion system. The voltage-type self-commutated conversion system further includes a DC capacitor connected between the DC bus lines, a transformer connected between an AC system and AC terminals of the power converter and a control circuit for controlling the power converter. The control circuit includes a gate control circuit for generating gate signals for determining conduction periods of the self-turn-off devices in the power converter, a first protection circuit for turning on the self-turn-off devices connected to positive side of the DC bus line in case of protective shutdown of the power converter and a second protection circuit for turning off the self-turn-off devices connected to negative side of the DC bus line in case of the protective shutdown of the power converter.
摘要:
The temperature of a substrate is elevated rapidly while improving the temperature uniformity of the substrate.The substrate is loaded into a process chamber, the loaded substrate is supported on a first substrate support unit, a gas is supplied to the process chamber, the temperature of the substrate supported on the first substrate support unit is elevated in a state of increasing the pressure in the process chamber to higher than the pressure during loading of the substrate or in a state of increasing the pressure in the process chamber to higher than the pressure during processing for the surface of the substrate, the substrate supported on the first substrate support unit is transferred to the second substrate support unit and supported thereon after lapse of a predetermined time, and the surface of substrate is processed while heating the substrate supported on the second substrate support unit.
摘要:
To automatically purge a transfer chamber by means of inert gas. There is provided a substrate processing apparatus including a controller that performs control so that a transfer chamber 102 connected to a processing chamber 202 for processing a substrate is purged by gas, the controller having a switching unit that switches a function of exhausting the gas in the transfer chamber 102 in a set direction, and a function of circulating the gas through the transfer chamber 102 in an inert gas atmosphere.
摘要:
The temperature of a substrate is elevated rapidly while improving the temperature uniformity of the substrate. The substrate is loaded into a process chamber, the loaded substrate is supported on a first substrate support unit, a gas is supplied to the process chamber, the temperature of the substrate supported on the first substrate support unit is elevated in a state of increasing the pressure in the process chamber to higher than the pressure during loading of the substrate or in a state of increasing the pressure in the process chamber to higher than the pressure during processing for the surface of the substrate, the substrate supported on the first substrate support unit is transferred to the second substrate support unit and supported thereon after lapse of a predetermined time, and the surface of substrate is processed while heating the substrate supported on the second substrate support unit.