摘要:
An apparatus for acquiring a profile of a food product for use in subsequent processing of the food product includes a scanning area and one or more product drives for driving a product through the scanning area in a longitudinal direction. First line lasers project one first transverse laser line transversely to the longitudinal direction on the first surface and two first cameras arranged to capture different, overlapping first transverse image portions of the first transverse laser line. A reference laser projects a beam on the first surface that indicates a transverse reference position, and the two first cameras also capture the reference position. A control system uses the transverse reference position to combine the different first transverse image portions captured by the two first cameras to calculate a first profile of the first surface at multiple positions along a length of the first surface as the product is driven through the scanning area.
摘要:
A rotary molding system for molding food products, mold cavities formed when a mold shell rotates mold shapes disposed along the mold shell into a fill position between a fill plate and a wear plate. Molded food products are removed from mold cavities using knock-out cups, the use of air pressure, or the use of a vacuum source disposed below the mold cavity, without the need to slow the rotation of the mold shell. Knock-out cups may be used with a heating system to reduce accumulation of unwanted materials on the knock-out cups. The rotary molding system can also be used to form products with contoured surfaces. A smart tagging system can be used to ensure that compatible sets of mold shells and knock out cups are being used. A vacuum region may be disposed upstream of the fill position to remove air within the mold cavity prior to filling.
摘要:
A rotary molding system for molding food products, mold cavities formed when a mold shell rotates mold shapes disposed along the mold shell into a fill position between a fill plate and a wear plate. Molded food products are removed from mold cavities using knock-out cups, the use of air pressure, or the use of a vacuum source disposed below the mold cavity, without the need to slow the rotation of the mold shell. Knock-out cups may be used with a heating system to reduce accumulation of unwanted materials on the knock-out cups. The rotary molding system can also be used to form products with contoured surfaces. A smart tagging system can be used to ensure that compatible sets of mold shells and knock out cups are being used. A vacuum region may be disposed upstream of the fill position to remove air within the mold cavity prior to filling.
摘要:
A rotary molding system for molding food products, mold cavities formed when a mold shell rotates mold shapes disposed along the mold shell into a fill position between a fill plate and a wear plate. Molded food products are removed from mold cavities using knock-out cups, the use of air pressure, or the use of a vacuum source disposed below the mold cavity, without the need to slow the rotation of the mold shell. Knock-out cups may be used with a heating system to reduce accumulation of unwanted materials on the knock-out cups. The rotary molding system can also be used to form products with contoured surfaces. A smart tagging system can be used to ensure that compatible sets of mold shells and knock out cups are being used. A vacuum region may be disposed upstream of the fill position to remove air within the mold cavity prior to filling.
摘要:
An automated sequenced food article tray loading method and apparatus for a slicing machine where food articles can be loaded sequentially into designated and separated lanes of a lift tray and automatically sequentially assume a preload condition. Food article separation is maintained on the lift tray after the food articles are loaded. A food article sweep mechanism receives the food articles on the lift tray in their separated positions and transfers the food articles into the food article feed mechanism while maintaining the separated positions. The food article sweep mechanism is a substantially open structure without enclosing walls.
摘要:
A frame structure is provided for a reciprocating mold plate type food product forming apparatus. The frame structure includes an angular strut configuration for resisting horizontal reciprocating forces caused by the reciprocating mold plate and associated drive, and a tie rod arrangement for resisting separation-reaction forces caused by food product compression by a plunger in a pump cylinder of a food product pump. A base plate supports the frame structure. A first angular strut extends from a rear location forwardly and upwardly to an elevated central location and is fixed to the frame portion. A second angular strut extends from a forward location rearward and upwardly to the elevated central location and is fixed to said frame portion. The first and second struts transfer the horizontal component of the reciprocating forces into the base plate. A plurality of tie rods span between a backing plate that mounts a hydraulic cylinder that drives the plunger, and the pump cylinder. A one piece pump housing and valve manifold is incorporated into the apparatus.
摘要:
A loaf feed apparatus for a food article slicing machine. The apparatus has at least a first conveyor driven by a hollow shaft and a second conveyor driven by a second shaft. The second shaft independently operates within said hollow shaft. The hollow shaft and the second shaft are driven by independent drive sources. The apparatus also includes at least one lower conveyor driven by a drive roller having a outer diameter and a recessed diameter where the drive belt is connected around the recessed diameter and the conveyor belt is connected around the outer diameter. The drive belt operates within an area defined by the first conveyor belt. The apparatus also has a loaf gate for separating a slicing station from the loaf feed apparatus.
摘要:
A system, suitable for high-speed operation, by which raw product (45), such as a slab of meat, can be accurately processed, such as by slicing into segments of desired weight, comprises a product profiling apparatus (15). The product profiling apparatus (15) measures the profile of the physical process. The product profiling apparatus (15) includes line lasers (75, 85) for directing a line of light across the upper and lower surfaces of the product (45) and visual image cameras (80, 90) directed toward the profile surface to capture, at fixed increments, the product profile. The product may also be weighed and the product density determined from the overall profile measurements. A controller (150) receives this data, and instructs the physical process accordingly.
摘要:
A sheet interleave system for a reciprocating mold plate patty-forming apparatus includes a hopper for holding sheets, a shuttle, a sheet transfer device, at least one precise position controlled motor, and a drive train. The shuttle has a sheet-holding frame that is slidable between a sheet receiving position and a sheet dispensing position beneath knockout cups of the patty-forming apparatus. The sheet transfer device has a suction device for gripping a sheet from the hopper. The suction device is moveable from a position to grip a sheet from the hopper to a position to place the sheet on the sheet holding frame. The drive train is driven by one or two precise position controlled motor. The drive train is mechanically connected to the carriage and to the sheet transfer device to impart controlled motion thereto.
摘要:
A system, suitable for high-speed operation, by which raw product (45), such as a slab of meat, can be accurately processed, such as by slicing into segments of desired weight, comprises a product profiling apparatus (15). The product profiling apparats (15) meassures the profile of the physical process. The product profiling apparatus (15) includes line lasers (75, 85) for directing a line of light across the upper and lower surfaces of the product (45) and visual image cameras (80, 90) directed toward the profile surface to capture, at fixed increments, the product profile. The product may also be weighed and the product density determined from the overall profile measurements. A controller (150) receives this data, and instructs the physical process accordingly.