摘要:
A method of manufacturing a bipolar transistor is compatible with FinFET processing. A collector region (18) is formed and patterned, base contact regions (26) formed on either side, and a gap formed between the base contact region. A base (28), spacers (30) and an emitter (32) are formed in the gap.
摘要:
A method of manufacturing a bipolar transistor is compatible with FinFET processing. A collector region (18) is formed and patterned, base contact regions (26) formed on either side, and a gap formed between the base contact region. A base (28), spacers (30) and an emitter (32) are formed in the gap.
摘要:
The invention provides for an alternative and less complex method of manufacturing a bipolar transistor comprising a field plate (17) in a trench (7) adjacent to a collector region (21), which field plate (17) employs a reduced surface field (Resurf) effect. The Resurf effect reshapes the electric field distribution in the collector region (21) such that for the same collector-base breakdown voltage the doping concentration of the collector region (21) can effectively be increased resulting in a reduced collector resistance and hence an increased bipolar transistor speed. The method comprises a step of forming a base window (6) in a first base layer (4) thereby exposing a top surface of the collector region (21) and a part of an isolation region (3). The trench (7) is formed by removing the exposed part of the isolation region (3), after which isolation layers (9,10) are formed on the surface of the trench (7). A second base layer (13) is formed on the isolation layer (10), thereby forming the field plate (17), on the top surface of the collector region (21), thereby forming a base region (31), and on a sidewall of the first base layer (4), thereby forming an electrical connection between the first base layer (4), the base region (31) and the field plate (17). An emitter region (41) is formed on a top part of the base region (31), thereby forming the Resurf bipolar transistor.
摘要:
The invention provides for an alternative and less complex method of manufacturing a bipolar transistor comprising a field plate (17) in a trench (7) adjacent to a collector region (21), which field plate (17) employs a reduced surface field (Resurf) effect. The Resurf effect reshapes the electric field distribution in the collector region (21) such that for the same collector-base breakdown voltage the doping concentration of the collector region (21) can effectively be increased resulting in a reduced collector resistance and hence an increased bipolar transistor speed. The method comprises a step of forming a base window (6) in a first base layer (4) thereby exposing a top surface of the collector region (21) and a part of an isolation region (3). The trench (7) is formed by removing the exposed part of the isolation region (3), after which isolation layers (9,10) are formed on the surface of the trench (7). A second base layer (13) is formed on the isolation layer (10), thereby forming the field plate (17), on the top surface of the collector region (21), thereby forming a base region (31), and on a sidewall of the first base layer (4), thereby forming an electrical connection between the first base layer (4), the base region (31) and the field plate (17). An emitter region (41) is formed on a top part of the base region (31), thereby forming the Resurf bipolar transistor.
摘要:
Methods for manufacturing a bipolar transistor semiconductor device are described, along with devices fabricated in accordance with the methods. The methods include the steps of forming a stack of layers over a semiconductor body comprising a window definition layer (18,38), a layer (20) of semiconductor material, a first insulating layer (22), and a second insulating layer (24) which is selectively etchable with respect to the first insulating layer. A trench (26) is then etched into the stack down to the window definition layer. The portion of the trench extending through the second insulating layer is widened to form a wider trench portion (28) therethrough. A window (36) is defined in the window definition layer which is aligned with the wider trench portion, and serves to define the base-collector or base-emitter junction in the finished device.
摘要:
A semiconductor device (10) comprising a bipolar transistor and a field 5 effect transistor within a semiconductor body (1) comprising a projecting mesa (5) within which are at least a portion of a collector region (22c and 22d) and a base region (33c) of the bipolar transistor. The bipolar transistor is provided with an insulating cavity (92b) provided in the collector region (22c and 22d). The insulating cavity (92b) may be provided by providing a layer (33a) in the collector region (22c), creating an access path, for example by selectively etching polysilicon towards monocrystalline, and removing a portion of the layer (33a) to provide the cavity using the access path. The layer (33a) provided in the collector region may be of SiGe:C. By blocking diffusion from the base region the insulating cavity (92b) provides a reduction in the base collector capacitance and can be described as defining the base contact.
摘要:
A method of fabricating a bipolar transistor in a first trench (11) is disclosed wherein only one photolithographic mask is applied which forms a first trench (11) and a second trench (12). A collector region (21) is formed self-aligned in the first trench (11) and the second trench (12). A base region (31) is formed self-aligned on a portion of the collector region (21), which is in the first trench (11). An emitter region (41) is formed self-aligned on a portion of the base region (31). A contact to the collector region (21) is formed in the second trench (12) and a contact to the base region (31) is formed in the first trench (11). The fabrication of the bipolar transistor may be integrated in a standard CMOS process.
摘要:
The invention relates to a semiconductor device (30) comprising a substrate (1), a semiconductor body (25) comprising a bipolar transistor that comprises a collector region (3), a base region (4), and an emitter region (15), wherein at least a portion of the collector region (3) is surrounded by a first isolation region (2, 8), the semiconductor body (25) further comprises an extrinsic base region (35) arranged in contacting manner to the base region (4). In this way, a fast semiconductor device with reduced impact of parasitic components is obtained.
摘要:
A method of manufacturing a MEMS device comprises forming a MEMS device element (14). A sacrificial layer (20) is provided over the device element and a package cover layer (22) is provided over the sacrificial layer. The sacrificial layer is removed using at least one opening (22) in the cover layer and the at least one opening (24) is sealed by an anneal process.
摘要:
The invention relates to a method according to the part of the surface of the semiconductor body adjoining the opening and which is to be kept free is provided with a cover layer after which the high-crystalline layer is formed by means of a deposition process. The material of the cover layer can then easily be chosen such that it can be selectively etched relative to the silicon underneath. In addition, the cover layer can easily be selectively deposited on the relevant part of the surface because use can be made of an anisotropic deposition process. In such a process the cover layer is not deposited in the hollow and on the bottom of the hollow. It will be apparent that for the high-crystalline layer also other materials can be chosen such as SiGe having such low Ge contents that the SiGe cannot be etched selectively very well compared to the Silicon.