摘要:
Provided is a method for producing a Group III nitride-based compound semiconductor having an M-plane main surface. The method employs a sapphire substrate having a main surface which is inclined by 30° with respect to R-plane about a line of intersection Lsapph-AM formed by R-plane and A-plane perpendicular thereto. R-plane surfaces of the sapphire substrate are exposed, and a silicon dioxide mask is formed on the main surface of the substrate. AlN buffer layers are formed on the exposed R-plane surfaces. A GaN layer is formed on the AlN buffer layers. At an initial stage of GaN growth, the top surface of the sapphire substrate is entirely covered with the GaN layer through lateral growth. The GaN layer is grown so that the a-axis of the layer is perpendicular to the exposed R-plane surfaces of the sapphire substrate; the c-axis of the layer is parallel to the axis direction Lsapph-AM of the sapphire substrate; and the m-axis of the layer, which is inclined by 30° from the a-axis thereof, is perpendicular to the main surface (inclined by 30° from the exposed R-plane surfaces) of the sapphire substrate.
摘要:
An object of the present invention is to realize, by the flux process, the production of a high-quality n-type semiconductor crystal having high concentration of electrons. The method of the invention for producing an n-type Group III nitride-based compound semiconductor by the flux process, the method including preparing a melt by melting at least a Group III element by use of a flux; supplying a nitrogen-containing gas to the melt; and growing an n-type Group III nitride-based compound semiconductor crystal on a seed crystal from the melt. In the method, carbon and germanium are dissolved in the melt, and germanium is incorporated as a donor into the semiconductor crystal, to thereby produce an n-type semiconductor crystal.The mole percentage of germanium to gallium in the melt is 0.05 mol % to 0.5 mol %, and the mole percentage of carbon to sodium is 0.1 mol % to 3.0 mol %.
摘要:
An object of the present invention is to realize, by the flux process, the production of a high-quality n-type semiconductor crystal having high concentration of electrons. The method of the invention for producing an n-type Group III nitride-based compound semiconductor by the flux process, the method including preparing a melt by melting at least a Group III element by use of a flux; supplying a nitrogen-containing gas to the melt; and growing an n-type Group III nitride-based compound semiconductor crystal on a seed crystal from the melt. In the method, carbon and germanium are dissolved in the melt, and germanium is incorporated as a donor into the semiconductor crystal, to thereby produce an n-type semiconductor crystal.The mole percentage of germanium to gallium in the melt is 0.05 mol % to 0.5 mol %, and the mole percentage of carbon to sodium is 0.1 mol % to 3.0 mol %.