摘要:
The present invention provides an implant consisting of a biodegradable magnesium-based alloy or partially applied with the magnesium-based alloy, and a method for manufacturing the same. The implant according to the present invention is biodegradable, in which its biodegradation rate can be easily controlled, and the implant has excellent strength and interfacial strength to an osseous tissue.
摘要:
The present invention relates to a magnesium alloy having controlled corrosion resistance properties, which comprises magnesium (Mg) and an alloying element and includes a magnesium phase and a phase composed of magnesium and the alloying element, wherein the difference in electrical potential between the magnesium phase and the phase composed of magnesium and the alloying element is greater than 0 V but not greater than 0.2 V.
摘要:
The present invention provides a composite implant comprising pores of a porous structure filled with a biodegradable magnesium-based alloy. Further, the present invention provides a composite implant which filles pores of the porous structure prepared by a metal, a ceramic or a polymer with a biodegradable magnesium-based alloy. Mechanical properties of the composite implant of the present invention are improved because a magnesium-based alloy filled in its pores increases the strength of a porous structure comprised of a metal, a ceramic or a polymer. Further, it can be expected that the magnesium-based alloy filled in the porous structure is decomposed in a living body, thus increasing bone formation rate. Accordingly bone tissue can be rapidly formed because the composite implant of the present invention has high strength and excellent interfacial force between the composite implant and bone tissue, compared to conventional porous materials.
摘要:
Disclosed are an apparatus and a method for plasma ion implantation of a solid element, which enable plasma ion implantation of a solid element. According to the apparatus and method, a sample is placed on a sample stage in a vacuum chamber, and the inside of the vacuum chamber is maintained as a vacuum state. And, gas is supplied in the vacuum chamber, a first pulsed DC power is applied to a magnetron sputtering source so as to generate plasma ions of a solid element. The plasma ions of a solid element sputtered from the source are implanted on the surface of the sample. The first power is a pulse DC power capable of applying a high power the moment a pulse is applied while maintaining low average power. And, simultaneously with the applying of the first pulse power, a second power may be supplied to the sample stage, which is a high negative voltage pulse accelerating plasma ions of a solid element to the sample and synchronized to the pulse DC power for magnetron sputtering source. And, inductively coupled plasma may be generated in the vacuum chamber via antenna so as to increase ionization rate of a solid element and lower operation pressure of magnetron sputtering source.
摘要:
Disclosed are an apparatus and a method for plasma ion implantation of a solid element, which enable plasma ion implantation of a solid element.According to the apparatus and method, a sample is placed on a sample stage in a vacuum chamber, and the inside of the vacuum chamber is maintained as a vacuum state. And, gas is supplied in the vacuum chamber, a first pulsed DC power is applied to a magnetron sputtering source so as to generate plasma ions of a solid element. The plasma ions of a solid element sputtered from the source are implanted on the surface of the sample. The first power is a pulse DC power capable of applying a high power the moment a pulse is applied while maintaining low average power. And, simultaneously with the applying of the first pulse power, a second power may be supplied to the sample stage, which is a high negative voltage pulse accelerating plasma ions of a solid element to the sample and synchronized to the pulse DC power for magnetron sputtering source. And, inductively coupled plasma may be generated in the vacuum chamber via antenna so as to increase ionization rate of a solid element and lower operation pressure of magnetron sputtering source.
摘要:
A nanometer-sized porous metallic glass and a method for manufacturing the same are provided. The porous metallic glass includes Ti (titanium) at 50.0 at % to 70.0 at %, Y (yttrium) at 0.5 at % to 10.0 at %, Al (aluminum) at 10.0 at % to 30.0 at %, Co (cobalt) at 10.0 at % to 30.0 at %, and impurities. Ti +Y+Al+Co+the impurities=100.0 at %.
摘要翻译:提供了一种纳米尺寸的多孔金属玻璃及其制造方法。 多孔金属玻璃包括在50.0at%至70.0at%的Ti(钛),在0.5at%至10.0at%的Y(钇),10.0at%至30.0at%的Al(铝),10.0 %至30.0at%,和杂质。 Ti + Y + Al + Co +杂质= 100.0原子%。
摘要:
A nanometer-sized porous metallic glass and a method for manufacturing the same are provided. The porous metallic glass includes Ti (titanium) at 50.0 at % to 70.0 at %, Y (yttrium) at 0.5 at % to 10.0 at %, Al (aluminum) at 10.0 at % to 30.0 at %, Co (cobalt) at 10.0 at % to 30.0 at %, and impurities. Ti+Y+Al+Co+the impurities=100.0 at %.
摘要翻译:提供了一种纳米尺寸的多孔金属玻璃及其制造方法。 多孔金属玻璃包括在50.0at%至70.0at%的Ti(钛),在0.5at%至10.0at%的Y(钇),10.0at%至30.0at%的Al(铝),10.0 %至30.0at%,和杂质。 Ti + Y + Al + Co +杂质= 100.0原子%。
摘要:
A nanometer-sized porous metallic glass and a method for manufacturing the same are provided. The porous metallic glass includes Ti (titanium) at 50.0 at % to 70.0 at %, Y (yttrium) at 0.5 at % to 10.0 at %, Al (aluminum) at 10.0 at % to 30.0 at %, Co (cobalt) at 10.0 at % to 30.0 at %, and impurities. Ti+Y+Al+Co+the impurities=100.0 at %.
摘要翻译:提供了一种纳米尺寸的多孔金属玻璃及其制造方法。 多孔金属玻璃包括在50.0at%至70.0at%的Ti(钛),在0.5at%至10.0at%的Y(钇),10.0at%至30.0at%的Al(铝),10.0 %至30.0at%,和杂质。 Ti + Y + Al + Co +杂质= 100.0原子%。
摘要:
A nanometer-sized porous metallic glass and a method for manufacturing the same are provided. The porous metallic glass includes Ti (titanium) at 50.0 at % to 70.0 at %, Y (yttrium) at 0.5 at % to 10.0 at %, Al (aluminum) at 10.0 at % to 30.0 at %, Co (cobalt) at 10. at % to 30.0 at %, and impurities. Ti+Y+Al+Co+the impurities=100.0 at %.
摘要翻译:提供了一种纳米尺寸的多孔金属玻璃及其制造方法。 多孔金属玻璃包括在50.0at%至70.0at%的Ti(钛),在0.5at%至10.0at%的Y(钇),10.0at%至30.0at%的Al(铝),10 %至30.0原子%,杂质。 Ti + Y + Al + Co +杂质= 100.0原子%。