Abstract:
Disclosed is a green-emitting phosphor for a plasma display panel, represented by the formula 1: Ba1−xMnxAl12−yByO19 [Formula 1] wherein 0.001≦x≦0.5 and 0.01≦y≦1.0. The green-emitting phosphor has excellent color purity and luminance characteristics and shows an increased white color temperature of 9000 K or higher and a wide color reproducibility when it is applied to a plasma display panel, thereby improving picture quality characteristics.
Abstract translation:公开了一种等离子体显示面板的绿色荧光体,由式1表示:其中0.001 <= x <= 0.5,0.01 <= y <1.0。 绿色发光荧光体具有优异的色纯度和亮度特性,并且当应用于等离子体显示面板时,其白色色温增加了9000K以上,色彩再现性较强,从而提高了图像质量特性。
Abstract:
A photo-luminescent liquid crystal display (PL LCD) includes: a light control unit which includes a liquid crystal (LC) layer modulating the UV light and electrodes driving the LC layer; and a light emitting layer which emits light by the UV light transmitted through the light control unit. The light emitting layer includes inorganic phosphors and semiconductor quantum dots (QDs) having a quantum confinement effect. The PL LCD includes adding QDs having a high quantum efficiency into luminescent substances having lower light utilization efficiency than other colors, for example, red phosphor having very low quantum efficiency to improve the light utilization efficiency, thereby improving the color balance.
Abstract:
Provided is an (oxy)nitride phosphor, which is a compound represented by Formula 1 below: {M(1-x)Eux}aSibOcNd wherein, M is an alkaline earth metal; and 0
Abstract:
A method for manufacturing a flat fluorescent lamp is provided. The method involves: preparing a transparent front plate; preparing a transparent back plate facing the front plate, the back plate having a plurality of discharging electrodes thereon and a dielectric layer covering the discharging electrodes; forming a plurality of spacers between the front plate and the back plate to keep a separation gap therebetween; and forming a fluorescent layer by spraying phosphor slurry on one surface of at least one of the front plate and the back plate.
Abstract:
A visible light sensitive photocatalyst including a compound represented by Formula 1: Aa-xM1xSib-yM2yOc Formula 1 wherein A is one or more metals selected from Ag, Cu, and Au; M1 is one or more metals selected from Li, Na, K, Rb, and Cs; M2 is one or more metals selected from Ge, Sn, Ti, Zr, and Hf, and 1.7≦a≦2.3, 0.7≦b≦1.3, 2.7≦c≦3.3, 0≦x
Abstract:
An oxynitride phosphor including: a compound represented by Formula 1: M1a-xM2x-yCeySib-zAlzOc-xNx, Formula 1 wherein M1 is at least one element selected from the group consisting of calcium, strontium, barium, magnesium, zinc, and europium, M2 is at least one element selected from the group consisting of scandium, yttrium, lutetium, lanthanum, praseodymium, samarium, gadolinium, terbium, ytterbium, and dysprosium, and a is about 1.7 to about 2.3, b is about 0.7 to about 1.3, c is about 3.5 to about 4.5, x is greater than 0 and less than about 2, y is greater than 0 and less than about 0.5, and z is equal to or greater than 0 and less than about 0.5.
Abstract:
A flat lamp with horizontal facing electrodes is provided, in which a front substrate and a rear substrate are spaced such as to face each other. Walls between the front and rear substrates form a discharging space filled with a discharge gas. A plurality of front electrodes and a plurality of rear electrodes are provided on facing surfaces of the front and rear substrates, respectively. The front and rear electrodes, formed in strips, are arranged in such a way that the front electrodes alternate with the rear electrodes. Accordingly, the discharging distance between front and rear electrodes is lengthened, and many fine discharging operations occur between tip electrodes extending from the lateral sides of the electrode strips and flat portions of corresponding electrode strips. Therefore, a current concentration is prevented, thereby achieving uniform discharging. Also, brightness of the flat lamp increases.
Abstract:
An electrolyte membrane for a lithium battery, the electrolyte membrane including: a matrix including a polymerization product of a (meth)acrylate monomer composition; and a porous metal-organic framework dispersed in the matrix, wherein the metal-organic framework includes a crystalline compound including a metal ion or metal ion cluster which is chemically bound to an organic ligand, and a liquid electrolyte including a lithium salt and a nonaqueous organic solvent.
Abstract:
A halosilicate phosphor represented by Formula 1 p(Ca1-xM1x)O.qM2O2.rM3A2:sM4 wherein M1 includes at least one selected from a group consisting of Sr2+ and Ba2+; M2 includes at least one selected from a group consisting of Si4+ and Ge4+; M3 includes at least one selected from a group consisting of Ca2+, Sr2+ and Ba2+; M4 includes at least one selected from a group consisting of Eu2+, Mn2+, Sb2+, Ce3+, Pr3+, Nd3+, Sm3+, Tb3+, Dy3+, Ho3+, Er3+, Yb3+ and Bi3+; A includes at least one selected from a group consisting of F−, Cl−, Br− and I−; and wherein 0≦x
Abstract:
Disclosed is a silicate phosphor represented by Formula: Lia-xAxSrb-y-z-lByEuzClSic-mDmOd-nEn where A includes at least one ion selected from the group consisting of Na, K, Rb, and Cs. B includes at least one ion selected from the group consisting of Mg, Ca, Ba and Zn. C includes at least one ion selected from the group consisting of Sc, Y, La, Gd, Ce, Pr, Nd, Sm, Tb, Dy, Ho, Er, Tm, Yb, Lu and Bi. D includes at least one ion selected from the group consisting of B, Al, Ga, In and Tl. E includes at least one ion selected from the group consisting of F, Cl, Br, and I. Further disclosed is a white light emitting device including the silicate phosphor.