摘要:
There is provided a polarizable electrode for a capacitor and an electric double layer capacitor having the same. The polarizable electrode is a gel-state mixture including carbon nanotubes (CNTs) forming a network structure, porous carbon materials dispersed between the CNTs, and ionic liquids allowing the CNTs and the porous carbon materials to be dispersed. The polarizable electrode secures an electrical connection path between an electrode and a collector and prevents separation between the porous carbon materials and the ionic liquids using the network structure formed by the CNTs. Accordingly, the electric double layer capacitor having the polarizable electrode has low contact resistance between the electrode and the collector and has low possibility of polarization occurrence between the electrode and an electrolyte, resulting in high capacitance and high energy efficiency due to low equivalent series resistance.
摘要:
Disclosed herein are a lithium plate, a method for lithiation of an electrode, and an energy storage device. According to an exemplary embodiment of the present invention, there is provided a lithium plate used for lithium pre-doping of an electrode for an energy storage device, including: a contact area contacting the electrode at the time of the pre-doping; and a plurality of through holes or a plurality of grooves regularly distributed to be adjacent to the contact area so that an electrolytic solution gains easy access to the vicinity of a contact boundary of the contact area and the electrode at the time of the pre-doping. In addition, a method for lithiation of an electrode for an energy storage device using the above-mentioned lithium plate and an energy storage device including a negative electrode (anode) lithiated according to the method have been proposed.
摘要:
Disclosed herein are a binder composition for manufacturing an electrode of an energy storage device and a method for manufacturing an electrode of an energy storage device. The binder composition includes galactomannan as a major component and may exhibit sufficient binding force with a considerably small amount, as compared to binders in the related art. When the binder composition disclosed herein is used to manufacture an energy storage device having the same weight as that manufactured using the binder in the related art, the energy storage device may contain a greater amount of active material, compared to the binder in the related art. Consequently, beneficial effects such as improvement in an energy density as well as eco-friendly characteristics may be rendered.
摘要:
The present invention relates to a metal oxide electrode material, an electrochemical capacitor using the same, and a method for producing the same. More particularly, the present invention relates to a metal oxide electrode material substituting a sublattice location of metal for one or more kinds of different metals, an electrochemical capacitor using the same, and a method for producing the same in metal oxides constituting an electrochemical capacitor electrode.
摘要:
Disclosed herein is an energy storage apparatus. The energy storage apparatus according to an exemplary embodiment of the present invention includes: a first electrode structure; a second electrode structure opposite to the first electrode structure; and an electrolyte positioned between the first electrode structure and the second electrode structure, wherein the first electrode structure includes: a first current collector having a rugged structure; and a first active material layer conformally covering the rugged structure.
摘要:
There is provided a method for manufacturing a lithium manganese oxide-carbon nano composite by mixing a lithium ion solution with a manganese ion solution, dispersing a carbon material in the solution in which the lithium ion is mixed with the manganese ion, and forming the lithium manganese oxide on a surface of the carbon material by maintaining the solution in which the carbon material is dispersed at a predetermined temperature. In addition, there is provided the lithium manganese oxide-carbon nano composite formed by coating the carbon material with the lithium manganese oxide at a thickness of several nm. There is provided a manufacturing apparatus capable of coating the carbon material with the lithium manganese oxide at a thickness of several nm.
摘要:
A method for manufacturing a lithium ion capacitor, and a lithium ion capacitor manufactured using the method are provided. The method for manufacturing a lithium ion capacitor includes: disposing a lithium metal on a capacitor cell including a cathode, a separation film, and an anode; impregnating the capacitor cell with electrolyte including a lithium salt; changing the cathode and the anode to allow lithium ions within the electrolyte to be occluded into the anode; performing a primary reaction in which the cathode and the lithium metal are short-circuited to emit anions from the cathode and lithium ions from the lithium metal and a secondary reaction that the lithium ions emitted from the lithium metal are occluded into the cathode; and recharging the cathode and the anode to allow the lithium ions, which have been occluded into the cathode and the lithium ions within the electrolyte, to be occluded into the anode.
摘要:
Provided are a lithium ion capacitor and a method of manufacturing the same. The lithium ion capacitor includes an anode current collector, a first anode active material layer disposed on at least one surface of the anode current collector, and a second anode active material layer disposed on the first anode active material layer and formed of a lithium oxide layer having a spinel structure.
摘要:
The present invention provides a pre-doping system of an electrode and a system using the same. The pre-doping system includes: a doping means for performing a doping process where lithium ions are doped into an electrode; a measuring means for performing a measuring process where an open-circuit potential of the electrode is measured; a switch unit for selectively performing any one of the doping process and the measuring process; a controller for controlling the doping means, the measuring means, and the switch unit and acquiring the open-circuit potential of the electrode measured by the measuring means.