Abstract:
An image conversion apparatus to perform a motion compensation and a motion compensation method. The image conversion apparatus includes a first buffer, a second buffer, and a third buffer that store sequentially incoming video fields in sequence, a motion estimator that estimates a motion vector between a first field stored in the first buffer and a third field stored in the third buffer, a motion compensator that compensates for a motion between the first field and the third field using the motion vector output from the motion estimator and thereby outputs an interpolated field, an output unit that outputs at least one of the interpolated fields output from the motion compensator and a second field stored in the second buffer, and a field selector that selects a field to be output from the output unit according to a film mode of the sequentially incoming video fields.
Abstract:
An apparatus for and method of estimating a motion vector for a video image block are provided. The apparatus includes an error calculation unit calculating a motion estimation error for a predetermined prediction motion vector of the image block, an information extraction unit extracting geometric information regarding the image block, an update motion vector generation unit generating an update motion vector based on the motion estimation error calculated by the error calculation unit and the geometric information extracted by the information extraction unit, and an addition unit adding the prediction motion vector to the generated update motion vector.
Abstract:
An image resolution conversion method and apparatus based on a projection onto convex sets (POCS) method are provided. The image resolution conversion method comprises detecting an edge region and a direction of the edge region in an input low-resolution image frame in order to generate an edge map and edge direction information, generating a directional point spread function based on the edge map and the edge direction information, interpolating the input low-resolution image frame into a high-resolution image frame, generating a residual term based on the input low-resolution image frame, the high-resolution image frame, and the directional point spread function, and renewing the high-resolution image frame according to a result of comparing the residual term with a threshold.
Abstract:
An image conversion apparatus to perform a motion compensation and a motion compensation method. The image conversion apparatus includes a first buffer, a second buffer, and a third buffer that store sequentially incoming video fields in sequence, a motion estimator that estimates a motion vector between a first field stored in the first buffer and a third field stored in the third buffer, a motion compensator that compensates for a motion between the first field and the third field using the motion vector output from the motion estimator and thereby outputs an interpolated field, an output unit that outputs at least one of the interpolated fields output from the motion compensator and a second field stored in the second buffer, and a field selector that selects a field to be output from the output unit according to a film mode of the sequentially incoming video fields.
Abstract:
A memory device includes a lower electrode formed on a substrate, and an information storage unit formed on the lower electrode. The information storage unit includes a plurality of information storage layers spaced apart from one another. Each of the plurality of information storage layers is an information unit. A method of manufacturing a memory device uses a porous film to form the plurality of information storage layers.
Abstract:
A noise determining apparatus is provided. The noise determining apparatus includes a video determiner which determines type of video according to a pre-set criterion, a noise level determiner which determines a level of noise with reference to output from the video determiner, and a noise determiner which determines presence or absence of noise with reference to output from the noise level determiner. Accordingly, incorrect discrimination between a texture area of low level which is similar to noise and noise having a great level difference with respect to neighboring pixels is reduced.
Abstract:
An acousto-optic device capable of increasing a range of a diffraction angle of output light by using a nanostructured acousto-optic medium, and an optical scanner, an optical modulator, a two-dimensional/three-dimensional (2D/3D) conversion stereoscopic image display apparatus, and a holographic display apparatus using the acousto-optic device. The acousto-optic device may include a nanostructured acousto-optic medium formed by at least two different mediums repeatedly alternating with each other, wherein at least one of the at least two different mediums includes an acousto-optic medium. The acousto-optic device having the aforementioned structure may increase the range of a diffraction angle of output light. Thus, various systems such as the optical scanner, the optical modulator, the 2D/3D conversion stereoscopic image display apparatus, and the holographic display apparatus may not require a separate optical system to increase an operational angle range, thereby decreasing a size of the system and/or improving a resolution of the system.
Abstract:
Disclosed are an apparatus and method for converting video contents, each of which converts 2D contents into 3D contents. The method includes: determining an object to be extracted from a plurality of frames which contain 2D contents; determining a respective possession degree of information about the object to be extracted, with regard to each of the plurality of frames; selecting at least one key frame from among the plurality of frames in accordance with the determined possession degrees of information about the object to be extracted; extracting an object with regard to the selected key frame; assigning depth for conversion into 3D contents to the object to be extracted; and performing tracking upon all but the key frame from among the plurality of frames. Accordingly, the 2D-3D conversion can be performed with high accuracy and reliability.
Abstract:
An acousto-optic device having a wide range of diffraction angle and an optical scanner, a light modulator, and a display apparatus using the acousto-optic device are provided. The acousto-optic device includes a core layer having a periodic photonic crystal structure in which unit cells of predetermined patterns are repeated, a first clad layer on a first surface of the core layer, the first clad layer having a refractive index that is different from a refractive index of the core layer, a second clad layer on a second surface of the core layer, the second surface being opposite the first surface, the second clad layer having a refractive index that is different from the refractive index of the core layer, and a sound wave generator configured to apply surface acoustic waves (SAW) to the core layer, the first clad layer, the second clad layer, or any combination thereof.
Abstract:
An interpolation image generation method and apparatus for adaptively converting a frame rate based on a motion vector, and a display device having an adaptive frame rate conversion function are provided. The interpolation image generation method includes an interpolation image generation process calculating motion vectors from a previous image unit and a subsequent image unit that are continuous and generating an interpolation image using the motion vectors; a motion error boundary detection process detecting an area, in which a motion error determined from the motion vectors is greater than a predetermined value, as a boundary area of the interpolation image; and a motion compensation process compensating for a motion error inside the detected boundary area based on a dominant direction of the motion vectors using at least one of the previous image unit and the subsequent image unit.